Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans (Administrative Supplement)
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物(行政补充)
基本信息
- 批准号:10681110
- 负责人:
- 金额:$ 1.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAffectAgingAnimal ModelAuditoryAuditory Brainstem ResponsesBiological MarkersBiological ModelsCochleaComputer ModelsDataDeafferentation procedureDevelopmentDiagnosisDiagnostic testsHearing TestsHearing problemHistologicHumanHyperacusisIndividualInner Hair CellsKnowledgeLeadMeasurementMeasuresMethodsMissionMusOuter Hair CellsPeripheralPersonsPharmacotherapyPhysiologicalPrevalencePreventionPublic HealthReflex actionResearchRisk FactorsSpeech PerceptionSynapsesTestingTinnitusTranslationsUnited States National Institutes of HealthWorkbasecell injurydisabilityear muscleganglion cellhuman modelhuman subjectindividual patientinnovationmanmiddle earnoise exposureotoacoustic emissionpreventresearch clinical testingresponsespiral ganglion
项目摘要
Project Summary
Clinical testing for peripheral auditory dysfunction focuses on the audiogram. However, many auditory perceptual
deficits, such as tinnitus, hyperacusis, and difficulty with speech perception, cannot be fully explained by the
audiogram. Cochlear deafferentation (i.e., loss of inner hair cells, spiral ganglion cells, or cochlear synapses),
may contribute to these perceptual problems. However, there is currently no method for diagnosing
deafferentation in living humans. This prevents us from determining the prevalence of deafferentation in humans,
identifying deafferentation risk factors and perceptual consequences, or testing potential drug treatments.
Several non-invasive physiological measures are sensitive to loss of cochlear synapses (a form of
deafferentation) in animal models, including the auditory brainstem response (ABR), the envelope following
response (EFR), and the middle ear muscle reflex (MEMR). However, it is unclear how cochlear gain loss (e.g.,
due to outer hair cell damage) impacts the relationship between deafferentation and these physiological
measures, hindering translation to a diagnostic test for deafferentation. The overall objective of this proposal is
to develop a computational model that can estimate deafferentation from non-invasive physiological
measurements in humans with varying degrees of cochlear gain loss. The central hypothesis is that cochlear
gain loss can be predicted from distortion product otoacoustic emissions (DPOAEs) and deafferentation can be
predicted from a combination of ABR, EFR, and MEMR measurements. This hypothesis will be tested by
pursuing four specific aims: 1) Expand a computational model of the auditory periphery (CMAP) to predict ABR,
EFR, MEMR, and DPOAE responses in mice and humans based on both cochlear gain and afferent function, 2)
Validate and refine the CMAP by collecting physiological and histological data from mouse, 3) Predict
deafferentation in individual human subjects from physiological measurements by fitting the CMAP using
Bayesian regression, and 4) Evaluate deafferentation predictions for their relationship with risk factors and
predicted perceptual consequences of deafferentation. This approach is innovative because it extends prior work
to animal and human models with both cochlear gain loss and deafferentation, uses computational modeling to
bridge the gap between model systems, and combines multiple physiological measurements to predict
deafferentation in individual human subjects. The proposed research is significant because we currently have
no means of diagnosing deafferentation. Thus, the prevalence, associated risk factors, and perceptual impacts
of this condition are unclear. This project is expected to result in a biomarker of deafferentation for individual
patients that is based on their physiological measurements. This will enable us to identify peripheral auditory
damage that is independent of cochlear gain loss. If the biomarker is correlated with risk factors such as noise
exposure and auditory perceptual deficits such as speech perception difficulty, it will allow for the development
of targeted treatments for auditory perceptual deficits and strategies for damage prevention.
项目概要
周围听觉功能障碍的临床测试重点是听力图。然而,许多听觉感知
诸如耳鸣、听觉过敏和言语感知困难等缺陷不能完全用
听力图。耳蜗传入神经阻滞(即内毛细胞、螺旋神经节细胞或耳蜗突触丧失),
可能会导致这些知觉问题。但目前尚无诊断方法
活人的传入神经阻滞。这使我们无法确定人类传入神经阻滞的患病率,
识别传入神经阻滞的风险因素和感知后果,或测试潜在的药物治疗。
几种非侵入性生理测量对耳蜗突触(耳蜗突触的一种形式)的丧失很敏感。
动物模型中的传入神经阻滞),包括听觉脑干反应(ABR),包络跟随
反应(EFR)和中耳肌肉反射(MEMR)。然而,尚不清楚耳蜗增益如何损失(例如,
由于外毛细胞损伤)影响传入神经阻滞和这些生理学之间的关系
措施,阻碍转化为传入神经阻滞的诊断测试。该提案的总体目标是
开发一个计算模型,可以估计非侵入性生理传入神经阻滞
对具有不同程度耳蜗增益损失的人类进行测量。中心假设是耳蜗
增益损失可以通过失真产物耳声发射 (DPOAE) 进行预测,并且传入传入神经阻滞可以通过
根据 ABR、EFR 和 MEMR 测量值的组合进行预测。这个假设将被检验
追求四个具体目标:1)扩展听觉外围(CMAP)的计算模型来预测 ABR,
小鼠和人类基于耳蜗增益和传入功能的 EFR、MEMR 和 DPOAE 反应,2)
通过收集小鼠的生理和组织学数据来验证和完善 CMAP,3) 预测
通过使用 CMAP 拟合,从生理测量中得出个体人类受试者的传入阻滞
贝叶斯回归,以及 4) 评估传入阻滞预测与风险因素的关系,以及
预测传入神经阻滞的知觉后果。这种方法是创新的,因为它扩展了之前的工作
对于具有耳蜗增益损失和传入神经阻滞的动物和人类模型,使用计算模型
弥合模型系统之间的差距,并结合多种生理测量来预测
个别人类受试者的传入神经阻滞。拟议的研究意义重大,因为我们目前有
没有方法诊断传入神经阻滞。因此,患病率、相关风险因素和感知影响
这种情况的情况尚不清楚。该项目预计将产生个人传入神经阻滞的生物标志物
患者是基于他们的生理测量。这将使我们能够识别外周听觉
与耳蜗增益损失无关的损伤。如果生物标志物与噪音等风险因素相关
暴露和听觉感知缺陷,例如言语感知困难,这将有助于发展
听觉感知缺陷的针对性治疗和损害预防策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naomi Bramhall其他文献
Naomi Bramhall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naomi Bramhall', 18)}}的其他基金
Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物
- 批准号:
10666638 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Mouse, Man, and Machine: Combining Model Systems to Develop a Biomarker for Cochlear Deafferentation in Humans
小鼠、人和机器:结合模型系统开发人类耳蜗传入神经阻滞的生物标志物
- 批准号:
10666638 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Resolving the Paradox of Hearing Complaints with a Normal Audiogram: Differential Diagnosis and Perceptual Impacts of Cochlear Deafferentation
用正常听力图解决听力投诉的悖论:耳蜗传入神经阻滞的鉴别诊断和知觉影响
- 批准号:
10596630 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Resolving the Paradox of Hearing Complaints with a Normal Audiogram: Differential Diagnosis and Perceptual Impacts of Cochlear Deafferentation
用正常听力图解决听力投诉的悖论:耳蜗传入神经阻滞的鉴别诊断和知觉影响
- 批准号:
10424840 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Noise-Induced Cochlear Neuronal Degeneration and Its Perceptual Consequences
噪声引起的耳蜗神经元变性及其感知后果
- 批准号:
8781370 - 财政年份:2014
- 资助金额:
$ 1.48万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
任务切换影响相继记忆的脑机制:基于认知老化的视角
- 批准号:32360201
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Astoglial reactivity and metabolism in aging people with HIV
老年艾滋病毒感染者的星形胶质细胞反应性和代谢
- 批准号:
10846438 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Exploring CRMP5 as a novel target for Alzheimers disease
探索 CRMP5 作为阿尔茨海默病的新靶点
- 批准号:
10712329 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Bone and fat cross-talk in antiretroviral therapy (ART) treated HIV patients
抗逆转录病毒疗法 (ART) 治疗的 HIV 患者的骨和脂肪交叉对话
- 批准号:
10856307 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别:
Fronto-insular network in cognitive-affective interactions during decision-making
决策过程中认知情感交互的额岛网络
- 批准号:
10715606 - 财政年份:2022
- 资助金额:
$ 1.48万 - 项目类别: