Understanding lactate catabolism by BACH1 in triple negative breast cancer
了解三阴性乳腺癌中 BACH1 的乳酸分解代谢
基本信息
- 批准号:10672893
- 负责人:
- 金额:$ 48.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Intermittent PorphyriaAnimal ModelAntineoplastic AgentsBACH1 geneBindingBiochemical PathwayBiological AssayBreast Cancer CellBreast Cancer ModelBreast Cancer PatientBreast Cancer TreatmentCancer Cell GrowthCarbonCatabolismCellsCellular biologyClinical DataClinical ResearchCombined Modality TherapyConsumptionDataDependenceDevelopmentDrug DesignDrug TargetingEnzymesFDA approvedGene ExpressionGenesGeneticGenetic TranscriptionGoalsHeminHeterogeneityIn VitroIndividualLabelLactate DehydrogenaseLactate TransporterLinkMalignant NeoplasmsMammary NeoplasmsMessenger RNAMetabolicMetabolic PathwayMetabolismMitochondriaMolecularMolecular BiologyMusNatureNeoplasm MetastasisPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPlayPopulationPredispositionPublishingRegulationRepressionResearchResearch PersonnelResearch ProposalsRespirationRoleSourceTestingTherapeuticTherapeutic InterventionTranscriptTranscription RepressorTranscriptional RegulationWorkanti-canceranti-cancer therapeuticbiochemical toolscancer cellcancer therapyclinically significantgene repressionheme aimprovedin vivoinhibitorinnovationinsightmRNA Expressionmalignant breast neoplasmmetabolic phenotypemetabolomicsmitochondrial metabolismmouse modelmultidisciplinaryneoplastic cellnovelnovel strategiesoxidationpatient derived xenograft modelpharmacologicprogramspyruvate carrierresponsesingle-cell RNA sequencingskillssmall hairpin RNAtargeted treatmenttherapeutic targettherapeutically effectivetooltranscription factortranscriptomicstriple-negative invasive breast carcinomatumortumor heterogeneitytumor metabolism
项目摘要
PROJECT SUMMARY
Primary metabolic pathways in cancer are useful targets for therapeutic intervention. However, intratumoral
heterogeneity in cancer metabolism is a major challenge for anti-cancer therapy. Reducing metabolic variance
by reprogramming cancer metabolism is essential to enhance efficacy of inhibitors targeting metabolism. Our
long-term goal is to overcome metabolic heterogeneity through reprogramming metabolic networks to increase
the number of cancer cells vulnerable to metabolic inhibitors. To reach this goal, our novel strategy is to reduce
metabolic variance among cancer cells by targeting BACH1, a master regulator of metabolism-related
transcription in triple negative breast cancer (TNBC), to obtain maximal response of drugs targeting metabolic
pathways. Our previous molecular and metabolomic profiling of breast tumors revealed that BACH1 suppresses
mitochondrial metabolism. Thus, BACH1 depletion made TNBC cells more sensitive to mitochondrial inhibitors.
These findings led to the novel concept that BACH1 depletion increases the proportion of cancer cells with higher
dependency on mitochondrial respiration and restricted tumor metabolic plasticity. Our preliminary studies
indicate that BACH1 also suppresses lactate catabolism, which is a primary pathway for lactate oxidation in
mitochondria of cancer cells. In support of this finding, recent clinical studies showed that lactate catabolism
depends on lactate transporter (MCT1). In TNBC cells, BACH1 represses transcription of genes that encode
enzymes involved in lactate catabolism, including lactate transporter (MCT1), lactate dehydrogenase B (LDHB),
and mitochondrial pyruvate carriers. Specifically, BACH1 depletion sensitized cancer cells to blockade of MCT1
or LDHB. Based on our preliminary data, we hypothesize that BACH1 is the key determinant of whether cancer
cells produce lactate or consume lactate. The primary objective of this proposed study is to link BACH1
contribution to lactate catabolic variance, and to better understand regulation of lactate oxidation in TNBC. Using
multiple innovative approaches, including in vitro and in vivo breast tumor models and a combination of
transcriptomics and metabolomics, we will interrogate BACH1 regulation of lactate catabolism and define the
underlying molecular regulatory mechanism in breast cancer cells. Furthermore, using patient-derived xenograft
and syngeneic mouse models, we will investigate whether BACH1 inhibition (through the repurposed non-toxic
FDA-approved drug, panhematin) increases breast tumor vulnerability to drugs targeting the lactate transporter
MCT1. By combining cell biology and in vivo assays, this study will provide comprehensive insights into how
cancer cells use lactate as a substrate, whether metabolic variances are reduced by targeting BACH1, and how
to achieve better therapeutic strategies using lactate catabolism inhibitors.
项目概要
癌症的主要代谢途径是治疗干预的有用目标。然而,瘤内
癌症代谢的异质性是抗癌治疗的主要挑战。减少代谢差异
通过重新编程癌症代谢对于增强靶向代谢的抑制剂的功效至关重要。我们的
长期目标是通过重新编程代谢网络来克服代谢异质性,以增加
易受代谢抑制剂影响的癌细胞数量。为了实现这一目标,我们的新策略是减少
通过靶向 BACH1(代谢相关的主要调节因子)来改变癌细胞的代谢差异
三阴性乳腺癌 (TNBC) 中的转录,以获得靶向代谢药物的最大反应
途径。我们之前对乳腺肿瘤的分子和代谢组学分析表明,BACH1 抑制
线粒体代谢。因此,BACH1 缺失使 TNBC 细胞对线粒体抑制剂更加敏感。
这些发现引出了一个新概念:BACH1 缺失会增加具有较高水平的癌细胞比例。
对线粒体呼吸的依赖性和受限的肿瘤代谢可塑性。我们的初步研究
表明 BACH1 还抑制乳酸分解代谢,这是乳酸氧化的主要途径
癌细胞的线粒体。为了支持这一发现,最近的临床研究表明乳酸分解代谢
取决于乳酸转运蛋白 (MCT1)。在 TNBC 细胞中,BACH1 抑制编码基因的转录
参与乳酸分解代谢的酶,包括乳酸转运蛋白 (MCT1)、乳酸脱氢酶 B (LDHB)、
和线粒体丙酮酸载体。具体来说,BACH1 缺失使癌细胞对 MCT1 的阻断变得敏感
或LDHB。根据我们的初步数据,我们假设 BACH1 是癌症是否发生的关键决定因素
细胞产生乳酸或消耗乳酸。这项拟议研究的主要目标是将 BACH1 连接起来
对乳酸分解代谢变化的贡献,并更好地了解 TNBC 中乳酸氧化的调节。使用
多种创新方法,包括体外和体内乳腺肿瘤模型以及组合
转录组学和代谢组学,我们将探讨 BACH1 对乳酸分解代谢的调节并定义
乳腺癌细胞的潜在分子调控机制。此外,使用患者来源的异种移植物
和同基因小鼠模型,我们将研究是否 BACH1 抑制(通过重新利用的无毒
FDA 批准的药物 panhematin)增加了乳腺肿瘤对针对乳酸转运蛋白的药物的脆弱性
MCT1。通过结合细胞生物学和体内测定,这项研究将提供关于如何
癌细胞使用乳酸作为底物,是否可以通过靶向 BACH1 来减少代谢差异,以及如何减少代谢差异
使用乳酸分解代谢抑制剂实现更好的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiyoung Lee其他文献
Jiyoung Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Triggering a New Cancer Cell Death Mechanism in Sarcoma
触发肉瘤中新的癌细胞死亡机制
- 批准号:
10735740 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Hypoxia-activated probiotic agents for breast cancer
用于乳腺癌的缺氧激活益生菌制剂
- 批准号:
10660233 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Role of miR-195 in Chemo-Resistant Ovarian Cancer
miR-195 在化疗耐药性卵巢癌中的作用
- 批准号:
10640540 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别:
Mitigation of Radiation Induced Gastrointestinal Syndrome.
减轻辐射诱发的胃肠道综合症。
- 批准号:
10706240 - 财政年份:2023
- 资助金额:
$ 48.83万 - 项目类别: