Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
基本信息
- 批准号:10667938
- 负责人:
- 金额:$ 23.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-04 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAnimalsBasic ScienceBiomedical EngineeringBiomimeticsBiophysical ProcessCardiacCell Differentiation processCell PolarityCellsChickCiliaClinicalCongenital AbnormalityDefectDevelopmentDevicesDiffusionEmbryoEmbryonic DevelopmentEngineeringEthicsExtracellular MatrixFishesHandednessHealthcareHumanHuman EngineeringHuman bodyHydrogelsIn VitroIndividualIsomerismLeftLive BirthMechanicsModelingMorphogenesisMorphologyMotionMusOrganOrgan ModelOrganoidsPatternPharmaceutical PreparationsPlayPositioning AttributePremature BirthProcessRegulationResearchResearch PersonnelRoleScientific Advances and AccomplishmentsScientistShapesSideSignal TransductionSpontaneous abortionStructureSystemTechniquesTeratogensTissue EngineeringTrainingVertebratesXenopusdifferentiation protocolexperiencefascinatehuman embryonic stem cellinterestmorphogensnovelorgan on a chipplanar cell polarityprenatalscreeningstem cell biologystem cell fatestem cellsthree-dimensional modeling
项目摘要
The human body appears left-right (LR) symmetric, but the shape and positioning of internal organs are distinct
at two sides. Defects in laterality such as isomerism (loss of asymmetry), and heterotaxia (a loss of concordance
among the individual organs) are observed in more than 1 in 8000 live births, contribute to pre-term births and
miscarriage, and have significant clinical implications. Our lab has pioneered in the research of the cellular LR
asymmetry using novel in vitro microscale devices and has extensive experience in modeling organ asymmetries
such as cardiac c-looping. We would like to extend our research into studying the overall LR asymmetric body
plan, which is determined by a select group of cells in embryonic development, first identified in Xenopus as the
Spemann-Mangold organizing center. Since then, many studies have explored the functionality of a left-right
organizer (LRO) in various vertebrates, in particular, chick, fish, and mouse. Due to ethical concerns and the 14-
day restriction of culturing human embryos in vitro, the ability of researchers to study the formation of a human
organizer is very limited. Therefore, finding a biomimetic surrogate of the human organizer will be of great interest
to basic science and health care.
Recent rapid scientific advances in basic stem cell biology and organoid engineering have made it possible to
engineer a human organizer for studying LR symmetry breaking. Scientists have demonstrated that human
embryonic stem cells (hESCs) can be induced to express known organizer markers, including the Goosecoid
(GSC), with either the culture of embryoid bodies or the patterning of hESCs on 2D micropatterned circles. GSC
is a key organizer marker of LRO known to be conserved across several vertebrate species. The major challenge
now is how we can engineer the cells into highly organized and naturally curved cell sheets with planar
polarization and even with specific localization, structure, and motion of cilia so that the organizer can fulfill its
critical function in symmetry breaking. As a team of well-trained bioengineers and development biologists with
experience and expertise in stem cell biology and LR asymmetry, we are well-equipped to address this problem.
We propose to develop a novel in vitro human organizer model that will utilize organizer differentiation protocols,
a geometrically-control 3D hydrogel culture system, and a stable gradient generator for developmental
morphogens to facilitate the differentiation and structural formation of a human organizer. We will further study
the role of the cellular intrinsic bias, termed cell chirality, in planar cellular polarity (PCP) signaling and its
regulation of the human LRO morphogenesis.
Overall, the proposed study is timely in addressing a very fundamental yet fascinating question regarding the
developmental LR asymmetry. We will not only establish an in vitro 3D platform for studying the human LRO,
but also reveal biophysical mechanisms of PCP and chirality in realizing the critical function of LRO. It will pave
the way towards the further development of screening platforms for teratogens and prenatal drugs.
人体呈现左右对称,但内脏器官的形状和位置不同
在两侧。偏侧性缺陷,例如异构(不对称性丧失)和异位性(一致性丧失)
在超过八千分之一的活产中观察到这种现象,导致早产和
流产,具有重要的临床意义。我们实验室在细胞LR研究方面处于领先地位
使用新颖的体外微型设备研究不对称性,并在模拟器官不对称性方面拥有丰富的经验
例如心脏c环。我们希望将我们的研究扩展到整体 LR 不对称身体的研究
计划是由胚胎发育中的一组选定的细胞决定的,首先在非洲爪蟾中被识别为
斯佩曼-曼戈尔德组织中心。从那时起,许多研究都探索了左右手的功能
各种脊椎动物,特别是鸡、鱼和小鼠中的组织者(LRO)。由于道德问题和 14-
体外培养人类胚胎的天数限制,研究人员研究人类形成的能力
组织者的能力非常有限。因此,寻找人类组织者的仿生替代品将引起人们极大的兴趣
基础科学和医疗保健。
最近基础干细胞生物学和类器官工程方面的快速科学进展使得
设计一个人类组织者来研究 LR 对称性破缺。科学家已经证明,人类
胚胎干细胞 (hESC) 可以被诱导表达已知的组织者标记,包括 Goosecoid
(GSC),可以是胚状体的培养,也可以是 hESC 在 2D 微图案圆圈上的图案化。 GSC
是已知在多个脊椎动物物种中保守的 LRO 的关键组织者标记。主要挑战
现在我们如何将细胞设计成高度组织且自然弯曲的细胞片,并具有平面
极化,甚至具有纤毛的特定定位、结构和运动,以便组织者能够实现其
对称性破缺的关键函数。作为一支由训练有素的生物工程师和发育生物学家组成的团队
凭借在干细胞生物学和 LR 不对称方面的经验和专业知识,我们有能力解决这个问题。
我们建议开发一种新型体外人类组织者模型,该模型将利用组织者分化协议,
几何控制 3D 水凝胶培养系统和用于发育的稳定梯度发生器
形态发生素促进人类组织者的分化和结构形成。我们将进一步研究
细胞内在偏差(称为细胞手性)在平面细胞极性(PCP)信号传导中的作用及其
人类 LRO 形态发生的调节。
总体而言,拟议的研究及时解决了一个非常基本但令人着迷的问题:
发育性LR不对称。我们不仅会建立一个体外3D平台来研究人类LRO,
还揭示了 PCP 和手性在实现 LRO 关键功能中的生物物理机制。它将铺平
进一步开发致畸剂和产前药物筛查平台的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Q. Wan其他文献
Asymmetrical positioning of cell organelles reflects the cell chirality of mouse myoblast cells
细胞器的不对称定位反映了小鼠成肌细胞的细胞手性
- DOI:
10.1063/5.0189401 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6
- 作者:
Zeina Hachem;Courtney Hadrian;Lina Aldbaisi;Muslim Alkaabi;Leo Q. Wan;Jie Fan - 通讯作者:
Jie Fan
Engineering anatomically shaped human bone grafts
工程解剖形状的人体骨移植物
- DOI:
10.1073/pnas.0905439106 - 发表时间:
2009-10-09 - 期刊:
- 影响因子:0
- 作者:
Warren L. Grayson;M. Fröhlich;K. Yeager;Sarindr Bhumiratana;M. Ete Chan;C. Cannizzaro;Leo Q. Wan;X. S. Liu;X. Edward Guo;G. Vunjak‐Novakovic - 通讯作者:
G. Vunjak‐Novakovic
Helical vasculogenesis driven by cell chirality
细胞手性驱动的螺旋血管发生
- DOI:
10.1126/sciadv.adj3582 - 发表时间:
2024-02-21 - 期刊:
- 影响因子:13.6
- 作者:
Haokang Zhang;Tasnif Rahman;Shuhan Lu;Alej;ro P Adam;ro;Leo Q. Wan - 通讯作者:
Leo Q. Wan
Engineered platforms for mimicking cardiac development and drug screening
用于模拟心脏发育和药物筛选的工程平台
- DOI:
10.1007/s00018-024-05231-1 - 发表时间:
2024-04-25 - 期刊:
- 影响因子:0
- 作者:
Madison Stiefbold;Haokang Zhang;Leo Q. Wan - 通讯作者:
Leo Q. Wan
Biomechanical Modeling of Cell Chirality and Symmetry Breaking of Biological Systems.
细胞手性和生物系统对称性破缺的生物力学建模。
- DOI:
10.1016/j.mbm.2024.100038 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0
- 作者:
Tasnif Rahman;Frank Peters;Leo Q. Wan - 通讯作者:
Leo Q. Wan
Leo Q. Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Q. Wan', 18)}}的其他基金
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 23.17万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 23.17万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10650246 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10448260 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10838024 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Cell Chirality Based In Vitro Models For Embryonic Development and Abnormalities
基于细胞手性的胚胎发育和异常体外模型
- 批准号:
8757997 - 财政年份:2014
- 资助金额:
$ 23.17万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Programmable DNA Nanostructures as Biomedical and Structural Scaffolds
可编程 DNA 纳米结构作为生物医学和结构支架
- 批准号:
10711302 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Cell Intrinsic and Extrinsic Factors Driving Maturation in Human PSC-derived Neurons
驱动人 PSC 衍生神经元成熟的细胞内在和外在因素
- 批准号:
10736603 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别: