Transcriptional Regulatory Networks of Craniofacial Development
颅面发育的转录调控网络
基本信息
- 批准号:10633187
- 负责人:
- 金额:$ 12.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAccelerationAdoptedAffectAgeAutomobile DrivingBioinformaticsBiological AssayBiological ModelsBiologyCartilageCellsChIP-seqComplexComputational ScienceComputer ModelsCongenital AbnormalityDataData ScienceData SetDatabasesDefectDentalDependenceDevelopmentDevelopment PlansEctodermEmbryoEnhancersFaceFaceBaseFacultyFoundationsFutureGene ExpressionGenesGeneticGenetic ModelsGenetic TranscriptionGenomeGenomicsGoalsGrowthHistonesHumanHuman GeneticsKnowledgeLaboratoriesLearningLive BirthMachine LearningMentorsMentorshipMesenchymalMesenchymeMethodsMolecularMorphogenesisMultiomic DataMusMuscleMutant Strains MiceNational Institute of Dental and Craniofacial ResearchOralPathologyPatternPerformancePopulationPositioning AttributeProcessProteinsRegulatory ElementResearchResourcesScientistSignal PathwaySignal TransductionSolidStudy modelsSystemTechniquesTechnologyTissuesTranscriptional RegulationTransgenic OrganismsValidationbonecareercareer developmentcell typecraniofacialcraniofacial developmentcritical perioddesigndifferential expressionin silicointerestmedical specialtiesmouse modelnetwork modelsnext generationorofacial cleftprogramspromoterpublic databaserecruitsingle-cell RNA sequencingspatiotemporaltenure tracktranscription factortranscription regulatory networktranscriptometranscriptome sequencing
项目摘要
Abstract
Human craniofacial development is a complex process and frequently goes awry to cause a major class of
birth defects, orofacial clefting, which affects approximately 1 in 700 live births. Proper facial development in
mouse and human requires three sets of paired facial prominences coming together by growth,
morphogenesis, and fusion. Embryonic facial development is strikingly similar in human and mouse, making
the mouse the best available model system for human. Previous studies have shown that the expression of
many thousands of genes changes across tissue layer, age, and/or prominence, as well as cell population
during early mouse facial development. However, we still only have a rudimentary understanding of how these
changes are regulated by the interaction of transcriptional modulators in the developing face. To understand
how genes are transcriptionally regulated during facial development, this research seeks to construct
transcriptional regulatory networks in a temporospatial manner by in silico analysis of publicly available multi-
omic datasets. Aim 1 will focus on the identification and verification of transcriptional regulatory networks
operating in facial mesenchyme with a focus on super-enhancers. Aim 2 will adopt a similar approach to study
the ectoderm which acts as a vital signaling center for the mesenchyme. Finally, in Aim 3 I will apply
knowledge from Aims 1 and 2 to build transcriptional regulatory networks at the single cell level. These aims
will take advantage of available RNA-seq, ATAC-seq, histone marker ChIP-seq, transcription factor ChIP-seq,
bulk and single cell RNA-seq data from wild-type or mutant mice, as well as facial enhancer expression
databases. Accomplishment of these studies will predict how genes are transcriptionally regulated in a
temporospatial manner during facial development and discover sets of core transcription factors and super-
enhancers controlling facial development. These transcriptional regulatory networks will be relevant to the
genetic and molecular underpinnings of human orofacial clefting, and will provide clear testable predictions
about transcription factor function and the consequences of aberrant expression. Performance and
accomplishment of these Aims will also act as a major component of my career development plan, in which my
goal is to obtain and independent tenure-track faculty position and serve as a mentor to the next generation of
scientists. A major aspect of my career development plan is to build on my growing strength in bioinformatics
by learning more advanced techniques in this specialty alongside new computational based approaches, such
as machine learning. In this respect, my Aims and career development plan are aligned with a Notice of
Special Interest (NOSI) of NIDCR in Supporting Dental, Oral, and Craniofacial Research Using Bioinformatic,
Computational, and Data Science Approaches (NOT-DE-20-006) for which this application is targeted. I have
recruited a mentorship team with specialties in craniofacial biology, bioinformatics, machine learning, and
career development to help me achieve these goals.
抽象的
人类颅面发育是一个复杂的过程,经常出错会导致一类主要的问题
出生缺陷,即口颌面裂,影响大约七百个活产儿中就有一个。面部的正常发育
小鼠和人类需要三组成对的面部突起随着生长而聚集在一起,
形态发生和融合。人类和小鼠的胚胎面部发育惊人相似,这使得
小鼠是人类可用的最佳模型系统。先前的研究表明,表达
数千个基因在组织层、年龄和/或显着性以及细胞群中发生变化
在小鼠早期面部发育期间。然而,我们对于这些是如何实现的仍然只有初步的了解。
变化是通过发育中的转录调节剂的相互作用来调节的。要了解
这项研究试图构建面部发育过程中基因如何转录调控的机制
通过对公开可用的多基因进行计算机分析,以时空方式构建转录调控网络
组学数据集。目标 1 将重点关注转录调控网络的识别和验证
在面部间质中进行操作,重点是超级增强剂。目标2将采用类似的方法来研究
外胚层作为间充质的重要信号中心。最后,在目标 3 中我将申请
目标 1 和 2 的知识在单细胞水平上构建转录调控网络。这些目标
将利用可用的 RNA-seq、ATAC-seq、组蛋白标记 ChIP-seq、转录因子 ChIP-seq、
来自野生型或突变小鼠的大量和单细胞 RNA-seq 数据,以及面部增强子表达
数据库。这些研究的完成将预测基因如何在生物体中进行转录调控。
面部发育过程中的时空方式,并发现一组核心转录因子和超
控制面部发育的增强剂。这些转录调控网络将与
人类口颌面裂的遗传和分子基础,并将提供明确的可测试预测
关于转录因子的功能和异常表达的后果。性能和
实现这些目标也将成为我职业发展计划的一个重要组成部分,其中我的
目标是获得独立的终身教授职位,并作为下一代的导师
科学家。我职业发展计划的一个主要方面是加强我在生物信息学方面不断增长的实力
通过学习该专业的更先进技术以及基于新计算的方法,例如
作为机器学习。在这方面,我的目标和职业发展计划与《通知》一致
NIDCR 对利用生物信息学支持牙科、口腔和颅面研究的特别兴趣 (NOSI)
此应用程序针对的计算和数据科学方法 (NOT-DE-20-006)。我有
招募了一支颅面生物学、生物信息学、机器学习等专业的导师团队
职业发展帮助我实现这些目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Li其他文献
Low temperature methane steam reforming for SOFC
SOFC 低温甲烷蒸汽重整
- DOI:
10.1149/06801.2775ecst - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Zhongchao Dong;Chunwen Sun;Hong Li;Liquan Chen - 通讯作者:
Liquan Chen
Hong Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Li', 18)}}的其他基金
In utero rescue of cleft lip and palate in a humanized mouse model
人源化小鼠模型中唇裂和腭裂的子宫内抢救
- 批准号:
10645829 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Transcriptional Regulatory Networks of Craniofacial Development
颅面发育的转录调控网络
- 批准号:
10284443 - 财政年份:2021
- 资助金额:
$ 12.44万 - 项目类别:
Transcriptional Regulatory Networks of Craniofacial Development
颅面发育的转录调控网络
- 批准号:
10432118 - 财政年份:2021
- 资助金额:
$ 12.44万 - 项目类别:
Structural Biology Studies of Ribosome Biogenesis Network
核糖体生物发生网络的结构生物学研究
- 批准号:
10249225 - 财政年份:2018
- 资助金额:
$ 12.44万 - 项目类别:
Structural Biology Studies of Ribosome Biogenesis Network
核糖体生物发生网络的结构生物学研究
- 批准号:
10389719 - 财政年份:2018
- 资助金额:
$ 12.44万 - 项目类别:
Structures of RNA Processing and Silencing Enzymes in Prokaryotes
原核生物中 RNA 加工和沉默酶的结构
- 批准号:
9247630 - 财政年份:2012
- 资助金额:
$ 12.44万 - 项目类别:
相似国自然基金
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
衰老成纤维细胞通过逃逸巨噬细胞免疫监视加速皮肤衰老的机制研究
- 批准号:82373462
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高血糖通过激活核糖激酶促进血红蛋白核糖基化加速糖尿病微血管病变的机制研究
- 批准号:82360165
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Prss22通过调节uPA加速ADSCs介导的创面愈合的机制研究
- 批准号:82302807
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
尿毒症毒素通过激活环境感应器受体AhR抑制线粒体生物发生加速肾脏衰老和功能减退的机制研究
- 批准号:82370695
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
High-Performance Gradient Coil for 7 Tesla MRI
用于 7 特斯拉 MRI 的高性能梯度线圈
- 批准号:
10630533 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别:
A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
- 批准号:
10714543 - 财政年份:2023
- 资助金额:
$ 12.44万 - 项目类别: