Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
基本信息
- 批准号:10666856
- 负责人:
- 金额:$ 15.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlkali MetalsApplications GrantsBindingBiochemicalBiological AssayBiological ProcessBypassC-terminalCalorimetryCellsCentral Nervous SystemChimeric ProteinsConsumptionCorrelation StudiesCryoelectron MicroscopyCrystallographyDependenceDetergentsDifferential Scanning CalorimetryDissociationElectron Spin Resonance SpectroscopyElectrophysiology (science)EnhancersEscherichia coliEukaryotic CellEvaluationFamilyFluorescenceFluorescence SpectroscopyGenesGenetic EngineeringHomeostasisHumanIn VitroInsectaIon ChannelIonsKineticsKnowledgeLaboratoriesLibrariesLipid BilayersLipidsLiposomesMainstreamingMammalian CellMeasurementMeasuresMembrane ProteinsMetal Ion BindingMethodologyMethodsMolecular ConformationNervous SystemPichiaPotassium ChannelPreparationProductionProteinsProtocols documentationRecombinantsReportingStructureSystemTemperatureTimeTitrationsVoltage-Gated Potassium ChannelX-Ray Crystallographybiophysical analysiscell growthcostdesignexperienceinhibitorinterestmembermilligramnervous system disordernovelnovel strategiesoverexpressionpatch clampprotein expressionprotein structurescale upscreeningsynthetic biology
项目摘要
Project summary
The expression of human membrane proteins has been monopolized by the outrageously expensive and
time-consuming mammalian cell protein expression systems. This aspect is even worse for ion channels since
their overexpression causes a significant unbalance of the cell homeostasis and hence their expression become
toxic hampering cell growth and considerably lowering the yield of the recombinant ion channel and/or
compromising their biochemical stability for downstream processing. My laboratory is highly focused in
understanding how the structure determine the function of biomedically relevant human voltage gated K+-
channels at the nervous system and we have ample experience using Isothermal Titration Calorimetry,
Differential Scanning Calorimetry, Macromolecular Crystallography, Electrophysiology, Continuous Wave
Electron Paramagnetic Resonance and Fluorescence Spectroscopy to assess the structure, energetic and
kinetics of the conformational changes underlying the biological function of these ion channels. However, the
mainstream methods for the recombinant overexpression of human ion channels are slow, expensive and time
consuming (i.e., Pichia pastoris, insect cells and mammalian cells) and since we need to extract them, in many
cases, with extremely expensive detergents, this becomes the main bottleneck during the production of large
quantities of properly folded, biochemically stable, and functional ion channels.
To by-pass these limitations, my laboratory has achieved high level expression of properly folded and
fully functional human ion channels in E. coli by combining a Denovo Expression Enhancer Protein (DEEP),
which enhances the expression levels of heterologous proteins. This new approach for the expression of human
ion channels in E. coli circumvent the complexity and excessive cost of producing recombinant channels in
eukaryotic cells. We will develop and adapt our methodology to overexpress, purify, functionally evaluate, and
measure the ion binding affinity by Isothermal Titration Calorimetry of an understudied representative member
of the voltage gated K+-channels (VGKC) superfamily such as: KCNA6 or Kv1.6, a channel of unknown
experimentally determined structure and with no systematic functional characterization.
项目概要
人类膜蛋白的表达已被极其昂贵和昂贵的药物所垄断。
耗时的哺乳动物细胞蛋白表达系统。这对于离子通道来说更糟,因为
它们的过度表达会导致细胞稳态的显着失衡,因此它们的表达变得
毒性阻碍细胞生长并显着降低重组离子通道的产量和/或
损害其下游加工的生化稳定性。我的实验室高度专注于
了解结构如何决定生物医学相关的人体电压门控 K+- 的功能
神经系统的通道,我们在使用等温滴定量热法方面拥有丰富的经验,
差示扫描量热法、高分子晶体学、电生理学、连续波
电子顺磁共振和荧光光谱法评估结构、能量和
这些离子通道的生物功能背后的构象变化动力学。然而,
重组过表达人类离子通道的主流方法缓慢、昂贵且耗时
消耗(即毕赤酵母、昆虫细胞和哺乳动物细胞),并且由于我们需要提取它们,因此在许多情况下
情况下,使用极其昂贵的清洁剂,这成为大型生产过程中的主要瓶颈
大量正确折叠、生化稳定且功能齐全的离子通道。
为了绕过这些限制,我的实验室已经实现了正确折叠和
通过结合 Denovo 表达增强蛋白 (DEEP),在大肠杆菌中实现功能齐全的人类离子通道,
其增强异源蛋白质的表达水平。这种新的人类表达方式
大肠杆菌中的离子通道避免了生产重组通道的复杂性和过高的成本
真核细胞。我们将开发和调整我们的方法来过度表达、纯化、功能评估和
通过等温滴定量热法测量待研究的代表性成员的离子结合亲和力
电压门控 K+ 通道 (VGKC) 超家族的成员,例如:KCNA6 或 Kv1.6,未知通道
实验确定的结构,没有系统的功能表征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Gonzalo Cuello其他文献
Luis Gonzalo Cuello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Gonzalo Cuello', 18)}}的其他基金
A comprehensive thermodynamic and structural characterization of ion channel function and its regulation by the lipid bilayer composition
离子通道功能的综合热力学和结构表征及其由脂质双层组成的调节
- 批准号:
10623911 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel function
K 通道功能的高分辨率晶体学和功能研究
- 批准号:
9895075 - 财政年份:2012
- 资助金额:
$ 15.3万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel function.
K 通道功能的高分辨率晶体学和功能研究。
- 批准号:
10197146 - 财政年份:2012
- 资助金额:
$ 15.3万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel function.
K 通道功能的高分辨率晶体学和功能研究。
- 批准号:
9769053 - 财政年份:2012
- 资助金额:
$ 15.3万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel gating
K 通道门控的高分辨率晶体学和功能研究
- 批准号:
8290873 - 财政年份:2012
- 资助金额:
$ 15.3万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel gating
K 通道门控的高分辨率晶体学和功能研究
- 批准号:
8449092 - 财政年份:2012
- 资助金额:
$ 15.3万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel gating
K 通道门控的高分辨率晶体学和功能研究
- 批准号:
8642193 - 财政年份:2012
- 资助金额:
$ 15.3万 - 项目类别:
相似国自然基金
二元碱金属合金的间隙电子局域化行为研究
- 批准号:12364003
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
稀土元素在富碱金属热液中的迁移和富集机制实验研究
- 批准号:42373037
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于席夫碱金属配合物的有机半导体构筑及性质和光伏应用研究
- 批准号:22379061
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
生物质化学链气化中纳米限域铁基载氧体的团聚和碱金属中毒机理及抑制机制
- 批准号:52376184
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
碱金属离子调控Pt1-CeO2界面相互作用对其催化消除NO/CO反应性能影响的研究
- 批准号:22372076
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A comprehensive thermodynamic and structural characterization of ion channel function and its regulation by the lipid bilayer composition
离子通道功能的综合热力学和结构表征及其由脂质双层组成的调节
- 批准号:
10623911 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Development, Elucidation, and Application of New Principles in Stereoselective Catalysis
立体选择性催化新原理的开发、阐明和应用
- 批准号:
10622995 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Biomineralization potential of inorganic polymer for bone tissue regenerative engineering
无机聚合物在骨组织再生工程中的生物矿化潜力
- 批准号:
10728774 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Examining G-quadruplex metal site heterogeneity and the influence of peptide binding using 2D IR spectroscopy
使用 2D 红外光谱检查 G-四链体金属位点异质性和肽结合的影响
- 批准号:
10730921 - 财政年份:2023
- 资助金额:
$ 15.3万 - 项目类别:
Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers
基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像
- 批准号:
10596209 - 财政年份:2022
- 资助金额:
$ 15.3万 - 项目类别: