Developing a Synthetic Adeno-Associated Virus (AAV) for Engineering Safer Gene Therapies
开发合成腺相关病毒(AAV)以设计更安全的基因疗法
基本信息
- 批准号:10629902
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAcute Kidney FailureAdverse effectsAttenuatedBase PairingBrainCapsidCardiopulmonaryCell DeathCellsCentral Nervous System DiseasesCessation of lifeChildClinical TrialsDNADNA DamageDNA SequenceDependovirusDiseaseElectroporationEmbryoEngineeringFDA approvedFunctional disorderGene DeliveryGenesGenetic DiseasesGenomeHippocampusHistologyHumanInjectionsInverted Terminal RepeatLearningLearning DisabilitiesMagnetic Resonance ImagingMediatingMedicineMemoryMethodsMethyl-CpG-Binding Protein 2Mucopolysaccharidosis IIIMusMutationNamesNeuronsNeurosciencesNucleotidesPathologicPatientsProductionProteinsPublishingR7 VirusRNARecombinant adeno-associated virus (rAAV)RecombinantsReportingResearchRett SyndromeRiskSingle-Stranded DNASiteSourceStructureSymptomsTerminal Repeat SequencesTestingTherapeuticThrombocytopeniaToxic effectTransgenesTropismViralViral GenomeViral VectorVirusWorkadult neurogenesisadverse outcomec9FTD/ALSdigitalexperimental studygene productgene therapyimmunogenicityimmunoreactionin uteroin vivoloss of functionmouse modelmutantnerve stem cellnovel therapeuticsresponsestem cell biologystem cell proliferationtransgene expressionvector
项目摘要
PROJECT SUMMARY
Medicine is currently undergoing a revolution, where viable gene therapies are being developed for
multiple disorders, including diseases of the central nervous system (CNS). One of the obstacles that limits the
use of gene therapy is the availability of safe and effective vectors for widespread delivery of genes. Due to its
stable transgene expression, broad tropism, and modest immunogenicity, recombinant adeno-associated virus
(rAAV) is the most widely used viral vector for human gene therapy. Almost 200 rAAV therapies have been
completed or are currently in clinical trials, including two FDA-approved therapies for genetic diseases of the
CNS. However, evidence is mounting that rAAV-based gene therapies are not without toxicity or significant risk,
with several rAAV-related deaths and numerous adverse outcomes reported during the past three years alone.
In a recent trial for Sanfilippo syndrome, 1 patient died and others demonstrated concerning MRI changes at
rAAV injection sites within the brain, halting the study. Other rAAV trials have reported serious adverse effects
ranging from thrombocytopenia to acute kidney failure to cardio-pulmonary insufficiency. While some of these
adverse effects are thought to be caused by immune reactions to the AAV capsid or transgene, increasing
evidence indicates that the rAAV genome, which contains two 145-base pair DNA segments named inverted
terminal repeats (ITRs), is a major source of rAAV toxicity.
While conducting fundamental experiments on learning and memory, we discovered that rAAV was toxic
to dividing neural progenitor cells (NPCs) and immature neurons, completely ablating adult neurogenesis in the
mouse hippocampus. Consistent with previous work, these experiments indicate that the AAV ITRs appear to
be sufficient and necessary for this toxicity. Embarking on a new research direction, we will utilize our
complimentary expertise in neuroscience, stem cell biology, and engineering to develop new methods for rAAV
production and create the first rAAVs with engineered ITRs that are safer for human gene therapy. These new
therapies will be particularly important in the treatment of neurodevelopmental and other diseases in children
who have active proliferation of stem/progenitor cells, which are exquisitely sensitive to rAAV toxicity. In the
current proposal we aim to:
Aim 1. Determine which components of the ITR DNA sequence are required for toxicity in NPCs in vivo.
Aim 2. Develop a cell-free synthetic rAAVs capable of packaging genomes with mutant ITRs.
Aim 3. Engineer an rAAV that will rescue loss of function in a murine model of Rett syndrome while
demonstrating less toxicity than conventional rAAVs.
项目概要
医学目前正在经历一场革命,正在开发可行的基因疗法
多种疾病,包括中枢神经系统(CNS)疾病。限制的障碍之一
基因治疗的使用是指提供安全有效的载体来广泛传递基因。由于其
稳定的转基因表达、广泛的趋向性和适度的免疫原性,重组腺相关病毒
(rAAV) 是人类基因治疗中使用最广泛的病毒载体。已有近 200 种 rAAV 疗法
已完成或目前正在进行临床试验,包括 FDA 批准的两种遗传性疾病疗法
中枢神经系统。然而,越来越多的证据表明基于 rAAV 的基因疗法并非没有毒性或重大风险,
仅在过去三年中就报告了几起与 rAAV 相关的死亡事件和大量不良后果。
在最近的一项 Sanfilippo 综合征试验中,1 名患者死亡,其他患者则表现出 MRI 变化
rAAV 注射部位位于大脑内,导致研究停止。其他 rAAV 试验报告了严重的不良反应
从血小板减少症到急性肾衰竭再到心肺功能不全。虽然其中一些
不良反应被认为是由 AAV 衣壳或转基因的免疫反应引起的,增加了
有证据表明,rAAV 基因组包含两个 145 碱基对的 DNA 片段,名为倒置
末端重复序列(ITR)是rAAV毒性的主要来源。
在进行学习和记忆基础实验时,我们发现rAAV有毒
分裂神经祖细胞(NPC)和未成熟神经元,完全消除成年神经发生
小鼠海马体。与之前的工作一致,这些实验表明 AAV ITR 似乎
对于这种毒性来说是充分且必要的。踏上新的研究方向,我们将利用我们的
神经科学、干细胞生物学和工程学方面的互补专业知识,用于开发 rAAV 新方法
生产并创建第一个带有工程 ITR 的 rAAV,对人类基因治疗更安全。这些新
疗法对于治疗儿童神经发育疾病和其他疾病尤为重要
干细胞/祖细胞增殖活跃,对 rAAV 毒性极其敏感。在
目前的提案我们的目标是:
目标 1. 确定 ITR DNA 序列的哪些成分是 NPC 体内毒性所必需的。
目标 2. 开发一种能够用突变 ITR 包装基因组的无细胞合成 rAAV。
目标 3. 设计一种 rAAV,以挽救 Rett 综合征小鼠模型的功能丧失,同时
表现出比传统 rAAV 更低的毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Shtrahman其他文献
Matthew Shtrahman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Shtrahman', 18)}}的其他基金
Investigating Mechanisms of Viral Impairment of Neurogenesis Using Recombinant AAV
使用重组 AAV 研究病毒损害神经发生的机制
- 批准号:
10660863 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Novel Multi-Depth Two-Photon Microscope for Measuring Neuronal Network Plasticity
用于测量神经元网络可塑性的新型多深度双光子显微镜
- 批准号:
10429581 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Novel Multi-Depth Two-Photon Microscope for Measuring Neuronal Network Plasticity
用于测量神经元网络可塑性的新型多深度双光子显微镜
- 批准号:
10058191 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
The Role of Adult-born Dentate Granule Cells in Epileptogenesis
成年齿状颗粒细胞在癫痫发生中的作用
- 批准号:
9180642 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
相似国自然基金
抑制MBD2通过下调Rac1和Pcbp2保护脓毒症AKI的机制研究
- 批准号:81870475
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Gasdermin家族蛋白介导的细胞程序性坏死在急性肾衰竭中的作用
- 批准号:81700596
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于腺苷相关蛋白同步化表达探讨缺血预适应保护急性肾功能衰竭的分子机制
- 批准号:81200540
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
生物人工肾小管治疗ARF/MODS的免疫调节作用
- 批准号:30570862
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
FrostBite-DMR - A new Drug-Free Approach for Treating Type 2 Diabetes Supplemental Request
FrostBite-DMR - 一种治疗 2 型糖尿病的新无药方法补充请求
- 批准号:
10748325 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
FrostBite-DMR - A New Drug-Free Approach for Treating Type 2 Diabetes
FrostBite-DMR——一种治疗 2 型糖尿病的无药物新方法
- 批准号:
10596881 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Targeting cell membrane repair for treatment of acute kidney injury
靶向细胞膜修复治疗急性肾损伤
- 批准号:
9102545 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Therapeutic targeting of GSK3beta: A novel approach for podocyte protection
GSK3beta 的治疗靶向:足细胞保护的新方法
- 批准号:
8158517 - 财政年份:2011
- 资助金额:
$ 42万 - 项目类别:
Novel Small Molecule Agonists of Integrin CD11b/CD18 as Anti-Inflammatory Agents
作为抗炎剂的新型整合素 CD11b/CD18 小分子激动剂
- 批准号:
8712472 - 财政年份:2011
- 资助金额:
$ 42万 - 项目类别: