Elucidating the Mechanistic Basis for Phagotrophy in the Protozoan Trypansoma cruzi
阐明原生动物克氏锥虫吞噬作用的机制基础
基本信息
- 批准号:10630908
- 负责人:
- 金额:$ 30.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Actin-Binding ProteinActinsActive Biological TransportAmino AcidsAreaBindingBinding ProteinsBiogenesisBiologyCarbonCell SurvivalCell membraneCellsCholesterolCiliaComplementComplexConsumptionCuriositiesCytoplasmDigestionDimensionsEatingEcosystemEndocytosisEnvironmentEukaryotaFamilyFilamentFlagellaFoodFood WebsGoalsHealthHumanIn VitroIntegral Membrane ProteinKnock-outLifeLightLysosomesMass Spectrum AnalysisMastigophoraMechanicsMediatingMembrane MicrodomainsMethodologyMethodsMolecularMolecular AnalysisMotorMyosin ATPaseNutrientOralOrganellesOrganismParasitesParasitic DiseasesPhosphotransferasesPhotonsPlantsPlayPolymersPositioning AttributePredatory BehaviorProcessProtein IsoformsProteinsProtozoaPublishingReceptor Protein-Tyrosine KinasesReceptor SignalingReportingRoleRouteSignal PathwaySignal TransductionSignaling MoleculeSite-Directed MutagenesisSourceStructureSurfaceTechniquesTrypanosoma cruziTubular formationVesicleWorkextracellularfeedingglycosylationinduced pluripotent stem cellinhibitorinsightmicrobialmodel organismoverexpressionpalmitoylationparasitismpolymerizationreceptorrecruittooltraffickingtransmission process
项目摘要
PROJECT SUMMARY
Whether its photons or fries eating is fundamental for life. From this basic principle, living organisms have
evolved innumerable strategies to capture energy and nutrients from their environment, leading, in turn, to the
incredible ecological diversity spanning the gamut from light eating photosynthetic autotrophs to predatory
heterotrophs. As part of the world’s aquatic ecosystems, the expansive family of heterotrophic protozoan
predators play a critical role in environmental carbon and nutrient cycling as they consume 75% of primary
producing planktonic autotrophs daily. The vast majority of these flagellated phagotrophs use self-generated
currents to funnel their prokaryotic prey into an ancient and highly enigmatic feeding apparatus prior to
digestion. This feeding structure begins as a plasma membrane surface opening (cytostome), descends into
an internal tubular invagination (cytopharynx) and ends with prey being enveloped within budding vesicles
destined for lysosome fusion. Here we refer to this organelle as the cytostome/cytopharynx complex or SPC
and, despite its near ubiquitous presence in protozoans, next to nothing is known mechanistically about how
this structure is formed or functions. Intriguingly, a class of these phagotrophic predators known as the
kinetoplastids, gave rise to a lineage of parasitic protozoa that can infect a wide variety of organisms ranging
from plants to humans. Curiously, one species in particular, Trypanosoma cruzi, retained this ancestral
organelle much like its free-living relatives (e.g. bodonids) and continues to use it as its primary route of
endocytosis. Due to the fact that T. cruzi is easily culturable, genetically tractable and not reliant on SPC
mediated endocytosis for viability in vitro, we have been able to conduct the first ever in-dept molecular
analyses of this ubiquitous feeding organelle. Our initial published work on this structure described the first
known proteins targeted to the SPC and was followed by a report on the identification of a family of SPC
targeted myosin motors that we show contribute directly to the endocytic process. As a continuation of these
studies, this proposal seeks to generate a holistic understanding of how SPC mediated endocytosis
fundamentally functions. We will begin by dismantling the unified activity of endocytosis into its constituent
processes; cargo capture through surface receptors (Aim1), receptor signal transduction and activation of
endocytic machinery (Aim2) and finally active transport of phagocytosed cargo along the SPC for digestion
(Aim3). Each of these aims will address important basic aspects of protozoan biology that continue to remain
poorly understood. Critically, this proposal will combine both a broad approach to identify cytostomal surface
receptors and SPC specific signaling components with a focused analysis of the role of the Act2 isoform in the
endocytic process. By combining this model organism with a broad range of cutting-edge molecular tools and
methodologies, we will be able to elucidate the mechanistic basis of this ancient protozoal feeding apparatus
with the goal of providing insight into basic processes ranging from microbial food webs to parasitic diseases.
项目概要
无论是光子还是薯条的吃都是生命的基础,从这个基本原理来看,生物体都有。
进化出无数的策略来从环境中获取能量和营养,进而导致
令人难以置信的生态多样性,涵盖从光食光合自养生物到掠食性生物的各个领域
异养生物是世界水生生态系统的一部分,是一个庞大的异养原生动物家族。
捕食者在环境碳和养分循环中发挥着关键作用,因为它们消耗了 75% 的初级资源
每天产生浮游自养生物,这些有鞭毛的吞噬生物中的绝大多数使用自生生物。
电流将它们的原核猎物输送到一个古老且高度神秘的进食装置中
这种进食结构从质膜表面开口(细胞口)开始,下降到消化。
内部管状内陷(细胞咽),最终猎物被包裹在出芽的囊泡内
此处我们将这种细胞器称为细胞口/细胞咽复合体或 SPC。
而且,尽管它在原生动物中几乎无处不在,但我们对它是如何发生的却几乎一无所知。
有趣的是,这种结构的形成或功能是一类被称为吞噬性捕食者。
动质体产生了一系列寄生原生动物,可以感染多种生物体
奇怪的是,有一个物种,克氏锥虫,保留了这一祖先。
细胞器很像它的自由生活的亲戚(例如bodonids),并继续使用它作为其主要途径
由于 T. cruzi 易于培养、遗传易驯化且不依赖于 SPC。
介导的内吞作用在体外的活力,我们已经能够进行有史以来第一个深入的分子
我们最初发表的关于这种结构的研究描述了第一个。
已知针对 SPC 的蛋白质,随后发布了关于 SPC 家族鉴定的报告
我们展示的靶向肌球蛋白马达直接有助于内吞过程。
研究中,该提案旨在全面了解 SPC 如何介导内吞作用
我们首先将内吞作用的统一活动分解为其组成部分。
过程;通过表面受体(Aim1)捕获货物、受体信号转导和激活
内吞机制 (Aim2) 以及最终沿着 SPC 主动运输吞噬的货物进行消化
(目标 3)。每个目标都将解决原生动物生物学中仍然存在的重要基本方面。
至关重要的是,该提案将结合两种广泛的方法来识别细胞造口表面。
受体和 SPC 特异性信号传导成分,重点分析 Act2 同工型在
通过将这种模型生物与广泛的尖端分子工具相结合,
方法论,我们将能够阐明这种古老的原生动物进食装置的机制基础
目标是深入了解从微生物食物网到寄生虫病的基本过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RONALD DREW ETHERIDGE其他文献
RONALD DREW ETHERIDGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RONALD DREW ETHERIDGE', 18)}}的其他基金
Elucidating the Mechanistic Basis for Phagotrophy in the Protozoan Trypanosoma cruzi (equipment supplement)
阐明原生动物克氏锥虫吞噬作用的机制基础(设备补充)
- 批准号:
10799091 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Elucidating the Mechanistic Basis for Phagotrophy in the Protozoan Trypansoma cruzi
阐明原生动物克氏锥虫吞噬作用的机制基础
- 批准号:
10345248 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Elucidating the Role of Endocytosis Via the Cytostome in the Life Cycle of Trypanosoma cruzi
阐明细胞口内吞作用在克氏锥虫生命周期中的作用
- 批准号:
10279960 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Elucidating the Role of Endocytosis Via the Cytostome in the Life Cycle of Trypanosoma cruzi
阐明细胞口内吞作用在克氏锥虫生命周期中的作用
- 批准号:
10626864 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Elucidating the Role of Endocytosis Via the Cytostome in the Life Cycle of Trypanosoma cruzi
阐明细胞口内吞作用在克氏锥虫生命周期中的作用
- 批准号:
10414106 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别:
Characterizing the unique endocytic organelle of Trypanosoma cruzi
表征克氏锥虫独特的内吞细胞器
- 批准号:
9808880 - 财政年份:2019
- 资助金额:
$ 30.2万 - 项目类别:
CHARACTERIZATION OF ESSENTIAL RHOPTRY KINASES OF TOXOPLASMA GONDII
弓形虫必需的棒状体激酶的特征
- 批准号:
8490510 - 财政年份:2011
- 资助金额:
$ 30.2万 - 项目类别:
CHARACTERIZATION OF ESSENTIAL RHOPTRY KINASES OF TOXOPLASMA GONDII
弓形虫必需的棒状体激酶的特征
- 批准号:
8504684 - 财政年份:2011
- 资助金额:
$ 30.2万 - 项目类别:
CHARACTERIZATION OF ESSENTIAL RHOPTRY KINASES OF TOXOPLASMA GONDII
弓形虫必需的棒状体激酶的特征
- 批准号:
8202521 - 财政年份:2011
- 资助金额:
$ 30.2万 - 项目类别:
相似国自然基金
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mitochondrial positioning regulates redox-signaling during cell migration
线粒体定位调节细胞迁移过程中的氧化还原信号
- 批准号:
10520211 - 财政年份:2023
- 资助金额:
$ 30.2万 - 项目类别:
Mechanism of nerve growth factor driven axon plasticity
神经生长因子驱动轴突可塑性机制
- 批准号:
10626679 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Mechanism of nerve growth factor driven axon plasticity
神经生长因子驱动轴突可塑性机制
- 批准号:
10626679 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Elucidating the Mechanistic Basis for Phagotrophy in the Protozoan Trypansoma cruzi
阐明原生动物克氏锥虫吞噬作用的机制基础
- 批准号:
10345248 - 财政年份:2022
- 资助金额:
$ 30.2万 - 项目类别:
Cargo Transport by Myosin Va and Kinesin-1 Molecular Motors: In Vitro Model Systems that Build Complexity in 3-Dimensions.
Myosin Va 和 Kinesin-1 分子马达的货物运输:构建 3 维复杂性的体外模型系统。
- 批准号:
10204620 - 财政年份:2021
- 资助金额:
$ 30.2万 - 项目类别: