MegaTrans – human transporter machine learning models
MegaTrans — 人类运输机机器学习模型
基本信息
- 批准号:10546264
- 负责人:
- 金额:$ 86.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAgrochemicalsAlgorithmsAngiotensin-Converting Enzyme InhibitorsAntiviral AgentsArizonaBayesian MethodBayesian learningBehaviorBiological AssayBlood-Testis BarrierCOVID-19 treatmentCRISPR/Cas technologyChemistryClientClinicalCodeCollaborationsCollectionComputer ModelsComputer softwareConsultDataData SetDatabasesDecision TreesDescriptorDockingDrug DesignDrug IndustryDrug InteractionsDrug ModelingsEvaluationFamilyFee-for-Service PlansFingerprintFoundationsGraphHela CellsHepatocyteHumanIn VitroIndustryInternationalIntuitionInvestmentsLearningLibrariesLicensingLigandsLiteratureMachine LearningMediatingMethodsModelingMolecularNatural ProductsNucleoside TransporterOnline SystemsOrganOutputPharmaceutical PreparationsPharmacologic SubstancePhaseProcessPropertyPubChemPublic DomainsPythonsReceiver Operating CharacteristicsReportingResourcesRiskSeminal fluidSiteSoftware ToolsStructureStructure-Activity RelationshipSystemTestingToxic Environmental SubstancesToxic effectTrainingTreesUniversitiesUridineValidationVendorVirusVisualizationWorkXenobioticsbaseclinically relevantcomputerized toolsconsumer productdata curationdeep learningdesigndrug candidatedrug discoverydrug dispositionhigh throughput screeningimprovedin vitro testingin vivoinhibitorinhibitor therapyinterestlong short term memorymachine learning algorithmmachine learning methodmachine learning modelmembermodel buildingmolecular shapemolnupiravirneural networknovel therapeuticspharmacophorepredictive modelingprospectiveprototyperandom forestremdesivirside effectsoftware developmenttooltool developmentuptakeweb app
项目摘要
Summary
Being able to predict interactions with important human transporters would be of value to new drug design to
avoid compounds that interact with them and cause undesirable side effects. Conversely, some drug transporters
can be used for targeting molecules to specific organs and this may have considerable utility. Understanding the
interactions of novel drugs, natural products and environmental toxicants and their interactions with an array of
such transporters is, therefore, important for several industries, as well as from a regulatory perspective (e.g.
FDA, EPA and EMA). Being able to predict such interactions in a fast and reliable manner effectively requires
using computational approaches and learning from in vitro data, the latter a resource that is rapidly growing.
Over the past 20 years, we have been at the forefront of applying different machine learning approaches to
modeling drug transporters and, in many cases, developing datasets for transporters for which there was scant
available data. We now propose doing this for several transporters that may be important for drug discovery. In
Phase I we focused on OATP1B1 (SLCO1B1), which is an uptake transporter largely restricted to the sinusoidal
aspect of hepatocytes where it mediates transport of a variety of structurally unrelated compounds, including
members of several clinically important drug families (incl. statins, sartans and angiotensin converting enzyme
(ACE) inhibitors). We tested 476 drugs against one substrate in vitro. We then curated these data and built
machine learning models using multiple machine learning methods as well as model evaluation metrics. This
enabled us to develop models for integration in a web-based software tool called MegaTrans® that enables the
user to input their own compound structures and generate predictions for interactions with transporter/s of
interest, as well as visualize the similarity to the training set of each model using several different visualization
methods. In addition, during Phase I we also performed preliminary data curation, model building and validation
for two equilibrative nucleoside transporters (ENTs), ENT1 and ENT2, that are present at the blood testes barrier
(BTB), where they can facilitate drug disposition (e.g. for antivirals, thereby potentially eliminating a sanctuary
site for viruses detectable in semen). We generated Bayesian and pharmacophore models and used these to
predict numerous compounds that were then tested in vitro against ENTs. We used these ENT models to predict
(i) the antivirals used in treating COVID-19, remdesivir and molnupiravir, inhibit ENT activity, and that (ii)
remdesivir is an ENT substrate, as well as validating these predictions. In Phase II we plan on building on the
foundation of Phase I and propose greatly expanding the ENT1 and ENT2 models through in vitro testing (at the
University of Arizona) of >2000 approved drugs, natural products, and environmental toxicants as inhibitors of
ENT transport. We will use these data to build and validate machine learning models using several algorithms,
at Collaborations Pharmaceuticals, Inc. We will also test these models using external validation with additional
molecules from vendor libraries and drug collections that are not in the model. In this process we will also build
out the capabilities of MegaTransÒ to use 3D pharmacophore descriptors to incorporate molecular shape
features and allow 3D searches. The return on investment of such a commercial tool would be that it could assist
in the design and selection of more favorable compounds by avoiding transporters of interest (or, conversely,
allow the targeting of specific transporters to increase uptake into organs). It could also identify compounds that
are already approved that might present a drug-interaction risk. Predicting such behavior seen in vivo is ideal
and will lead to the prioritization of compounds to test in vitro for potential drug-drug interactions. In summary,
we propose generating large training sets for ENT1 and ENT2 transporters that we will use to generate an array
of validated machine learning models of interest to drug discovery (with specific interest for those generating
antivirals). MegaTransÒ will be a commercial product available for licensing by pharmaceutical, consumer
product, agrochemical and regulatory groups, as well as fee-for-service consulting provided by Collaborations
Pharmaceuticals, Inc.
概括
能够预测与重要的人类转运蛋白的相互作用对于新药设计具有重要价值
避免与某些药物转运体相互作用并导致不良副作用的化合物。
可用于将分子靶向特定器官,这可能具有相当大的实用性。
新药、天然产物和环境毒物的相互作用及其与一系列物质的相互作用
因此,从监管角度来看,此类运输工具对于多个行业都很重要(例如:
FDA、EPA 和 EMA)能够以快速可靠的方式有效地预测此类相互作用。
使用计算方法并从体外数据中学习,后者是一种正在快速增长的资源。
在过去的 20 年里,我们一直处于应用不同机器学习方法的最前沿
对药物转运蛋白进行建模,并在许多情况下为缺乏药物转运蛋白的转运蛋白开发数据集
我们现在建议对几种可能对药物发现很重要的转运蛋白进行此操作。
第一阶段我们重点关注 OATP1B1 (SLCO1B1),它是一种主要局限于正弦曲线的摄取转运蛋白
肝细胞的一个方面,它介导多种结构上不相关的化合物的运输,包括
几个临床重要药物家族的成员(包括他汀类药物、沙坦类药物和血管紧张素转换酶)
(ACE) 抑制剂),我们在体外针对一种底物测试了 476 种药物,然后汇总并构建了这些数据。
使用多种机器学习方法以及模型评估指标的机器学习模型。
使我们能够开发模型以集成到名为 MegaTrans® 的基于网络的软件工具中,该工具使
用户输入自己的化合物结构并生成与转运蛋白相互作用的预测
兴趣,以及使用几种不同的可视化来可视化每个模型与训练集的相似性
此外,在第一阶段我们还进行了初步的数据整理、模型构建和验证。
对于存在于血睾屏障处的两种平衡核苷转运蛋白 (ENT) ENT1 和 ENT2
(BTB),它们可以促进药物处置(例如,对于抗病毒药物而言,可能会消除避难所)
精液中可检测到的病毒位点)我们生成了贝叶斯模型和药效团模型并使用它们来
预测多种化合物,然后在体外针对耳鼻喉科进行测试,我们使用这些耳鼻喉科模型来预测。
(i) 用于治疗 COVID-19 的抗病毒药物瑞德西韦 (remdesivir) 和莫努匹拉韦 (molnupiravir) 可抑制耳鼻喉科活性,并且 (ii)
瑞德西韦是一种耳鼻喉科底物,我们计划在第二阶段验证这些预测。
第一阶段的基础,并建议通过体外测试大大扩展 ENT1 和 ENT2 模型(在
亚利桑那大学)超过 2000 种批准药物、天然产物和环境毒物作为抑制剂
我们将使用这些数据来使用多种算法构建和验证机器学习模型,
在 Collaborations Pharmaceuticals, Inc. 我们还将使用外部验证和附加功能来测试这些模型
在此过程中,我们还将构建来自供应商库和药物集合的分子。
展示 MegaTransÒ 使用 3D 药效团描述符整合分子形状的能力
功能并允许 3D 搜索,这种商业工具的投资回报将是它可以提供帮助。
通过避免感兴趣的转运蛋白来设计和选择更有利的化合物(或者相反,
它可以靶向特定的转运蛋白以增加器官的吸收)。
已经批准可能存在药物相互作用风险的药物是预测体内观察到的这种行为的理想选择。
并将导致化合物的优先顺序在体外测试潜在的药物相互作用。
我们建议为 ENT1 和 ENT2 转运蛋白生成大型训练集,用于生成数组
对药物发现感兴趣的经过验证的机器学习模型(特别感兴趣的是那些生成
MegaTransÒ 将成为可供制药公司、消费者许可的商业产品。
产品、农用化学品和监管小组,以及 Collaborations 提供的收费服务咨询
制药公司
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan J Cherrington其他文献
Nathan J Cherrington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan J Cherrington', 18)}}的其他基金
相似国自然基金
粘土基超分子杂化水凝胶的构筑及其农用化学品控释协同污染物吸附研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
多重响应性纤维素基水凝胶可控合成及在农用化学品控释和金属离子吸附中应用研究
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:地区科学基金项目
农用化学品污染对土壤微生物功能与遗传多样性影响研究
- 批准号:39670151
- 批准年份:1996
- 资助金额:12.0 万元
- 项目类别:面上项目
相似海外基金
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
- 批准号:
10674729 - 财政年份:2019
- 资助金额:
$ 86.48万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 86.48万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 86.48万 - 项目类别:
Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
- 批准号:
9066743 - 财政年份:2013
- 资助金额:
$ 86.48万 - 项目类别:
Mapping the Secondary Metabolomes of Marine Cyanobacteria
绘制海洋蓝细菌的次级代谢组图
- 批准号:
8562582 - 财政年份:2013
- 资助金额:
$ 86.48万 - 项目类别: