Hox Gene Regulation of Skeletal Repair
Hox 基因对骨骼修复的调控
基本信息
- 批准号:10550118
- 负责人:
- 金额:$ 3.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdipocytesAdultAllelesAnimalsAnteriorBehaviorBiologicalBiological AssayBone MarrowBone MatrixBone callusBone remodelingCartilageCell Culture TechniquesCell Differentiation processCell LineageCellsChondrocytesChondrogenesisCollagenCollectionControl AnimalDataDefectDevelopmentDevelopmental ProcessEmbryonic DevelopmentEventExhibitsFractureGene ExpressionGene Expression RegulationGenesGeneticGenetic RecombinationGoalsGrowthHistocytochemistryHistologyHomeobox GenesHomeostasisInjuryKnowledgeLabelLaboratoriesLifeMaintenanceMeasuresMediatingMesenchymalMesenchymal Stem CellsModelingMolecularMusNatural regenerationOrganOsteoblastsOsteocytesOsteogenesisPathway interactionsPatternPlayPopulationProcessRadialReporterReportingRoentgen RaysRoleSkeletonSmall Interfering RNAStromal CellsTestingTimeTomatoesWorkbasebonebone cellbone fracture repaircartilage cellconditional mutantdifferential expressionfibulagene functionhealinginjury and repairinsightloss of functionmicroCTmouse modelmutantosteogenicparalogous genepostnatalprogenitorrepairedresponseresponse to injuryself-renewalsingle cell analysissingle cell sequencingskeletalskeletal stem cellstemstem cell populationstem cellstibiatooltranscription factortranscriptome sequencingtranscriptomicsulna
项目摘要
PROJECT SUMMARY/ABSTRACT
Hox genes are a group of evolutionarily conserved transcription factors important for several developmental
processes, including patterning of the anterior-posterior axis of the skeleton. The Hox11 paralogous gene
group, which is expressed in the zeugopod region (radius/ulna and fibula/tibia), are necessary for proper
patterning of the zeugopod. In the past few years, work from the Wellik laboratory has shown that these
developmentally important Hox transcription factors remain expressed in the skeleton throughout life,
specifically in progenitor-enriched mesenchymal stem cells (MSCs). Rigorous genetic lineage labeling from the
lab demonstrated that these cells give rise to all three mesenchymal lineages, osteoblasts, chondrocytes and
adipocytes, and exhibit life-long self-renewal, providing strong evidence that this population of cells are skeletal
stem cells. A key question based on this information is whether Hox gene function is important in these stem
cells throughout life. We recently reported that temporal deletion of Hox11 at adult stages results in defects in
osteoblastogenesis, wherein differentiation is initiated, but osteoblasts and osteocytes fail to mature. Adult
conditional loss of Hox11 function results in a progressively weakened bone matrix where collagen does not
properly assemble in remodeling bone. In this study, I will use a temporally-controlled, conditional loss-of-
function model to assess defects in response to fracture repair (Aim 1). Preliminary data shows that
temporally-deleted, ROSACreERT2/+;Hoxa11eGFP/-;Hoxd11LoxP/LoxP mice are unable to repair after fracture.
Additionally, preliminary data suggest that the populations of osteoblasts and chondrocytes appear to be in
abnormal in mutants. Using Hoxa11CreERT2 to enact both deletion and lineage labeling, I can mark the cells that
have undergone recombination for isolation and transcriptomic analyses (Hoxa11eGFP/CreERT2;Hoxd11LoxP/LoxP;
ROSAtd-Tomato/+, Aim 2). Fracture injury induces an acute response in which stem/progenitor expansion and
differentiation to both skeletal lineages is occurring simultaneously, providing an excellent model to isolate
single cells and identify the pathways and targets Hox genes regulate in these processes. Preliminary data
shows that a large proportion of GFP+ cells are available for collection from the fracture callus, making single
cell sequencing not only possible, but a highly effective tool to investigate transcriptomic change in Hox-
expressing and Hox-lineage cells. The overall goal of this project is to define Hox genetic function in fracture
repair and to identify the molecular mechanisms by which Hox genes regulate skeletal behavior in this process.
项目概要/摘要
Hox 基因是一组进化上保守的转录因子,对多种发育非常重要
过程,包括骨骼前后轴的图案。 Hox11 旁系同源基因
组,在 zeugopod 区域(桡骨/尺骨和腓骨/胫骨)中表达,对于正确的
zeugopod 的图案。在过去几年中,Wellik 实验室的工作表明,这些
对发育至关重要的 Hox 转录因子在整个生命周期中都在骨骼中保持表达,
特别是在富含祖细胞的间充质干细胞(MSC)中。严格的遗传谱系标记
实验室证明这些细胞产生所有三种间充质谱系:成骨细胞、软骨细胞和
脂肪细胞,并表现出终生的自我更新,提供了强有力的证据表明该细胞群是骨骼细胞
干细胞。基于此信息的一个关键问题是 Hox 基因功能在这些茎中是否重要
细胞贯穿一生。我们最近报道,成年阶段 Hox11 的暂时缺失会导致
成骨细胞发生,其中分化开始,但成骨细胞和骨细胞未能成熟。成人
Hox11 功能的有条件丧失会导致骨基质逐渐减弱,而胶原蛋白则不会
正确组装在重塑骨中。在这项研究中,我将使用时间控制的、有条件的损失-
评估骨折修复缺陷的函数模型(目标 1)。初步数据表明
暂时缺失的 ROSACreERT2/+;Hoxa11eGFP/-;Hoxd11LoxP/LoxP 小鼠骨折后无法修复。
此外,初步数据表明,成骨细胞和软骨细胞的数量似乎处于
突变体中异常。使用 Hoxa11CreERT2 进行删除和谱系标记,我可以标记那些
已进行重组以进行分离和转录组分析(Hoxa11eGFP/CreERT2;Hoxd11LoxP/LoxP;
ROSAtd-番茄/+,目标 2)。骨折损伤会引起急性反应,其中干细胞/祖细胞扩张并
两种骨骼谱系的分化同时发生,提供了一个很好的模型来分离
单细胞并识别 Hox 基因在这些过程中调节的途径和目标。初步数据
显示大部分 GFP+ 细胞可从骨折愈伤组织中收集,从而使单个
细胞测序不仅是可能的,而且是研究 Hox-转录组变化的高效工具
表达细胞和Hox谱系细胞。该项目的总体目标是定义骨折中的 Hox 遗传功能
修复并确定 Hox 基因在此过程中调节骨骼行为的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharine A. Hubert其他文献
Katharine A. Hubert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharine A. Hubert', 18)}}的其他基金
相似国自然基金
AGEs-RAGE轴诱导的肝细胞衰老促进糖尿病合并非酒精性脂肪性肝病进展的机制研究
- 批准号:82300914
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肝细胞因子ORM2通过抑制Kupffer细胞激活改善非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82300966
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
去势环境下CAF来源的CREB3L4通过增强癌细胞脂肪酸合成促进前列腺癌转移的机制研究
- 批准号:82303434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
运动促进脂肪细胞释放富含miR-17-3p的外泌体及靶向调控CAMKII介导心脏保护的作用机制研究
- 批准号:82302875
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Kallistatin抑制管周脂肪细胞线粒体裂变拮抗动脉粥样硬化的作用及机制研究
- 批准号:82370443
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of adipocyte loss in mouse models of familial partial lipodystrophy 2
家族性部分脂肪营养不良小鼠模型脂肪细胞丢失的机制2
- 批准号:
10748790 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Impact of obesity on SARS-CoV-2 infection and reciprocal effects of SARS-CoV-2 on metabolic disease
肥胖对 SARS-COV-2 感染的影响以及 SARS-COV-2 对代谢疾病的相互影响
- 批准号:
10583175 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Leptin Receptor Agonist to Treat Sleep Disordered Breathing
瘦素受体激动剂治疗睡眠呼吸障碍
- 批准号:
10599656 - 财政年份:2023
- 资助金额:
$ 3.49万 - 项目类别:
Mesenteric Fat Cryolipolysis to Reverse Insulin Resistance
肠系膜脂肪冷冻溶脂逆转胰岛素抵抗
- 批准号:
10603168 - 财政年份:2022
- 资助金额:
$ 3.49万 - 项目类别:
Ciliary Hedgehog signaling during adult tissue repair and disease
成人组织修复和疾病期间的睫状刺猬信号传导
- 批准号:
10444402 - 财政年份:2022
- 资助金额:
$ 3.49万 - 项目类别: