Rational design of anti-cancer therapeutics harnessing the synthetic lethality of methionine metabolism and arginine methyltransferases
利用蛋氨酸代谢和精氨酸甲基转移酶的合成杀伤力合理设计抗癌疗法
基本信息
- 批准号:10664872
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdenosineAffectAnimalsApcMin/+ miceApoptosisArchitectureArginineBiochemicalBody WeightCancer ModelCancer cell lineCellsClinical TrialsColon CarcinomaColonic NeoplasmsColorectal CancerCombined Modality TherapyDevelopmentDoseEnzymesFamilial Adenomatous Polyposis SyndromeFoundationsGene ExpressionGeneticGenotypeGlioblastomaGoalsGrowthHeartHistone H4HistonesHumanImmunohistochemistryIn VitroIndividualIntestinal NeoplasmsIsotopesKineticsLaboratoriesLarge Intestine CarcinomaLeadLinkMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMetabolicMetabolismMethionineMethionine Metabolism PathwayMethylationMethyltransferaseMolecularMonitorMusOralPathogenesisPatientsPhase I Clinical TrialsPhase I/II Clinical TrialPhenotypePhosphorylasesPost-Translational Protein ProcessingPrimary NeoplasmProliferatingProtein ChemistryProtein InhibitionProtein-Arginine N-MethyltransferaseProteinsProteomicsRNA SplicingRadiolabeledReactionRecyclingReporterRouteS-AdenosylhomocysteineS-AdenosylmethionineSafetyScheduleSpecificityStructureTailTechniquesTestingTherapeuticTissuesToxic effectTransferaseTreatment EfficacyWild Type MouseWorkanaloganti-canceranti-cancer therapeuticanticancer activityarginine methyltransferasebody systemcancer survivalcell growthdesigndriver mutationdrug candidateexperimental studyhistone methylationin vivoindexinginhibitorintestinal adenomametabolomicsmethionine adenosyltransferasemouse modelneoplastic cellnovelnovel anticancer drugnovel drug combinationpatient derived xenograft modelpharmacokinetics and pharmacodynamicsprotein biomarkersrational designsafety testingsingle-cell RNA sequencingsmall molecule inhibitortherapy designtooltumortumor growth
项目摘要
Proposal Abstract
Methionine adenosyltransferase 2 alpha (MAT2A) and protein arginine methyltransferase 5 (PRMT5) are
cancer targets that are synthetically lethal with MTAP deletions and have several drug candidates in clinical
trials targeting MTAP-/- cancers. MTAP is deleted in ~15% of human cancers and encodes the metabolic
enzyme 5’-methylthioadenosine phosphorylase, the sole enzyme in humans responsible for recycling of
methylthioadenosine (MTA) to methionine. MAT2A synthesizes S-adenosyl methionine (SAM), the methyl
donor substrate for methyltransferase reactions. PRMT5 utilizes SAM as a substrate and is inhibited by MTA,
and MTAP-/- cells in culture demonstrate elevated MTA levels. In vivo observations of glioblastoma tumors
suggest however, that MTAP-/- does not always lead to increased tumoral MTA levels due to MTA efflux into
matrix MTAP-competent cells. Additionally, MTAP deletions are a rare (~2%) occurrence in colorectal cancers
(CRCs), precluding MAT2A and PRMT5 inhibitors’ use for most CRCs. The Schramm laboratory has
previously solved the transition state (TS) structure of MTAP and synthesized a potent small molecule inhibitor
methylthio-DADMe-immucillin-A (MTDIA) that recapitulates the in vitro effects of MTA accumulation within
tissues. MTDIA has been shown to inhibit tumor growth in several cancer models, including CRC, and is linked
to a decrease in PRMT5 activity through elevation of MTA levels. We propose that MTDIA be used in
combination with MAT2A inhibitor AG-270, currently in Phase I clinical trials, to harness their synthetic lethality
by targeting PRMT5. We will test the safety, target engagement, and anti-cancer efficacy of MTDIA in
combination with AG-270 in ApcMin/+ and CRC patient-derived xenograft (PDX) mice. To determine
mechanisms of anti-cancer effects, we will probe the upstream and downstream effects related to PRMT5
activity. We will perform tumor metabolomic quantification of relevant metabolites and histone and protein-
arginine methylation characterization using immunohistochemistry and proteomic techniques. We will also
profile the gene expression changes using single-cell RNA sequencing to determine how combination therapy
alters tumor architecture and growth. Finally, we will solve the transition state structure of PRMT5 with the goal
of laying the foundations for development of novel transition state analogue inhibitors. This work will expand
upon the use of MAT2A and PRMT5 inhibitors beyond the ~15% of MTAP-deleted cancers and provide
avenues for MTDIA to be used in clinical trials.
提案摘要
蛋氨酸腺苷转移酶 2 α (MAT2A) 和蛋白精氨酸甲基转移酶 5 (PRMT5)
MTAP 缺失具有综合致死性的癌症靶点,并且有多种候选药物处于临床阶段
针对 MTAP-/- 癌症的试验 MTAP 在约 15% 的人类癌症中被删除,并编码代谢。
5’-甲硫腺苷磷酸化酶,人体中唯一负责循环利用的酶
甲硫腺苷 (MTA) 转化为甲硫氨酸 (MAT2A) 合成 S-腺苷甲硫氨酸 (SAM),即甲基。
PRMT5 是甲基转移酶反应的供体底物,利用 SAM 作为底物并被 MTA 抑制。
培养中的 MTAP-/- 细胞表现出胶质母细胞瘤肿瘤的体内观察结果升高。
然而,表明 MTAP-/- 并不总是导致肿瘤 MTA 水平升高,因为 MTA 外流到
此外,MTAP 缺失在结直肠癌中很少见(~2%)。
(CRC),排除了 MAT2A 和 PRMT5 抑制剂对大多数 CRC 的使用。
先前解决了MTAP的过渡态(TS)结构并合成了一种有效的小分子抑制剂
甲硫基-DADMe-immucillin-A (MTDIA) 概括了 MTA 积累的体外效应
MTDIA 已被证明可以抑制多种癌症模型(包括结直肠癌)中的肿瘤生长,并且与此相关。
我们建议通过提高 MTA 水平来降低 PRMT5 活性。
与目前处于 I 期临床试验的 MAT2A 抑制剂 AG-270 组合,以利用其合成致死率
我们将通过针对 PRMT5 来测试 MTDIA 的安全性、靶点参与度和抗癌功效。
与 AG-270 联合用于 ApcMin/+ 和 CRC 患者来源的异种移植 (PDX) 小鼠。
抗癌作用机制,我们将探讨PRMT5相关的上下游效应
我们将对相关代谢物以及组蛋白和蛋白质进行肿瘤代谢组学定量。
我们还将使用免疫组织化学和蛋白质组技术进行精氨酸甲基化表征。
使用单细胞 RNA 测序分析基因表达变化,以确定联合治疗的效果
最后,我们将解决 PRMT5 的过渡态结构。
为开发新型过渡态类似物抑制剂奠定基础。这项工作将得到扩展。
使用 MAT2A 和 PRMT5 抑制剂后,超过 15% 的 MTAP 缺失癌症并提供
MTDIA 用于临床试验的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel T Bedard其他文献
Gabriel T Bedard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel T Bedard', 18)}}的其他基金
Rational design of anti-cancer therapeutics harnessing the synthetic lethality of methionine metabolism and arginine methyltransferases
利用蛋氨酸代谢和精氨酸甲基转移酶的合成杀伤力合理设计抗癌疗法
- 批准号:
10536888 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
DNA甲基化对选择性多聚腺苷酸化的影响及在肝癌复发中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Rational design of anti-cancer therapeutics harnessing the synthetic lethality of methionine metabolism and arginine methyltransferases
利用蛋氨酸代谢和精氨酸甲基转移酶的合成杀伤力合理设计抗癌疗法
- 批准号:
10536888 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
ABCA7 dysfunction in Alzheimer's disease pathogenesis
ABCA7 功能障碍在阿尔茨海默病发病机制中的作用
- 批准号:
10212863 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
Understanding Endoplasmic Reticulum-Mitochondrial Cross-Talk in Corneal Endothelial Cells
了解角膜内皮细胞中的内质网-线粒体交互作用
- 批准号:
10550019 - 财政年份:2020
- 资助金额:
$ 5.27万 - 项目类别:
Understanding Endoplasmic Reticulum-Mitochondrial Cross-Talk in Corneal Endothelial Cells
了解角膜内皮细胞中的内质网-线粒体交互作用
- 批准号:
10597212 - 财政年份:2020
- 资助金额:
$ 5.27万 - 项目类别:
Augmenting Anti-Tumor Immunity Using Radiation in the Setting of DNA Repair Defects
在 DNA 修复缺陷的情况下使用辐射增强抗肿瘤免疫力
- 批准号:
10042191 - 财政年份:2020
- 资助金额:
$ 5.27万 - 项目类别: