Cellular and Genetic Regulation of Heart Tube Assembly in Zebrafish
斑马鱼心管组装的细胞和遗传调控
基本信息
- 批准号:7688518
- 负责人:
- 金额:$ 1.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAutomobile DrivingBehaviorBilateralBiological ModelsBlood VesselsCadherinsCardiacCardiac MyocytesCell AdhesionCell PolarityCellsCongenital Heart DefectsDNA Sequence RearrangementDataEmbryoEndocardiumFailureGenesGeneticGenetic ScreeningGoalsHeartImageImmigrationIndividualIntercellular JunctionsKnowledgeMaintenanceMicroscopyMolecularMorphogenesisMorphologyMovementMyocardialMyocardiumOrganPathway interactionsPatternPlayPopulationPositioning AttributeProcessRegulationReporterResearchResolutionRetinal ConeRoleScreening procedureShapesSignal TransductionSystemTestingTimeTransgenesTransgenic OrganismsTubeWorkZebrafishbasecadherin 5cell behaviorcell motilitycell typechemical geneticsgain of functiongastrulationgene functionheart visualizationintercalationinterestloss of functionmigrationprecursor cellresearch studytime use
项目摘要
DESCRIPTION (provided by applicant): Constructing an organ is an elaborate process that is not well understood. What mechanisms drive cells to attain the appropriate position and shape within an organ? How do different cell types within an organ interact during morphogenesis? These questions can be addressed in the context of the heart, which undergoes elaborate morphogenesis to rearrange bilateral populations of myocardial and endocardial precursor cells into a highly specialized multi-chambered organ. Heart shape relies on proper cell movements during early morphogenesis, when both cell types organize to form a two-layered heart tube consisting of an outer myocardium and an inner endocardium. Thus it is of interest to elucidate the mechanisms underlying the process of heart tube formation. This is particularly pertinent to understanding the causes of congenital heart defects, many of which are a result of failure to arrange cardiac cells properly during early heart morphogenesis. The goal of my postdoctoral research is to take advantage of the zebrafish as a model system to elucidate key components of the cellular and genetic regulation responsible for heart tube assembly. The zebrafish is an ideal system in which to study cardiac cell movements due to the easy visualization of the heart, the availability of transgenes appropriate for high-resolution time-lapse imaging, and the options for manipulating gene function through loss- and gain-of-function approaches. Previous work in the Yelon lab has discovered some of the fundamental cellular behaviors and genes required for myocardial precursor migration towards the midline. Following migration, cardiomyocytes coalesce around the endocardium to form a shallow cone, which then extends to form the linear heart tube. Little is known about the cellular and molecular mechanisms driving heart tube extension. Based on my preliminary studies, I hypothesize that myocardial cells undergo mediolateral intercalations to drive extension, and that the planar cell polarity pathway plays a role in orchestrating myocardial tube extension. The regulation of endocardial tube extension may be quite different, as endothelial tube assembly relies on precise control of cell-cell contacts. My preliminary data suggest that, during endocardial morphogenesis, cells begin directional migration as individuals followed by formation of cell-cell junctions, and that VEcadherin plays a role in this process. I will test these hypotheses through the following specific aims: 1) Determining the cell behaviors driving myocardial and endocardial tube extension, 2) Determining the role of planar cell polarity in myocardial tube extension and the role of VE-cadherin in endocardial tube extension, and 3) Conducting a chemical genetic screen to identify new regulators of heart tube extension.
描述(由申请人提供):构建器官是一个复杂的过程,目前尚不清楚。什么机制驱动细胞在器官内达到适当的位置和形状?器官内的不同细胞类型在形态发生过程中如何相互作用?这些问题可以在心脏的背景下得到解决,心脏经历复杂的形态发生,将心肌和心内膜前体细胞的双侧群体重新排列成高度专业化的多腔器官。心脏的形状依赖于早期形态发生过程中适当的细胞运动,此时两种细胞类型组织形成由外层心肌和内层心内膜组成的双层心管。因此,阐明心管形成过程的潜在机制是很有意义的。这对于理解先天性心脏缺陷的原因特别相关,其中许多是由于早期心脏形态发生过程中心肌细胞未能正确排列的结果。我博士后研究的目标是利用斑马鱼作为模型系统来阐明负责心管组装的细胞和遗传调控的关键组成部分。斑马鱼是研究心脏细胞运动的理想系统,因为它可以轻松地观察心脏,可以使用适合高分辨率延时成像的转基因,并且可以通过损失和增益来操纵基因功能。 - 函数方法。 Yelon 实验室之前的工作发现了心肌前体细胞向中线迁移所需的一些基本细胞行为和基因。迁移后,心肌细胞在心内膜周围合并形成浅锥体,然后延伸形成线性心管。关于驱动心管延伸的细胞和分子机制知之甚少。根据我的初步研究,我假设心肌细胞经历中外侧嵌入以驱动延伸,并且平面细胞极性通路在协调心肌管延伸中发挥作用。心内膜管延伸的调节可能完全不同,因为内皮管组装依赖于细胞与细胞接触的精确控制。我的初步数据表明,在心内膜形态发生过程中,细胞作为个体开始定向迁移,随后形成细胞-细胞连接,并且 VEcadherin 在此过程中发挥作用。我将通过以下具体目标来检验这些假设:1)确定驱动心肌和心内膜管延伸的细胞行为,2)确定平面细胞极性在心肌管延伸中的作用以及VE-钙粘蛋白在心内膜管延伸中的作用,以及3) 进行化学遗传筛选,以确定心管延伸的新调节因子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER Schumacher其他文献
JENNIFER Schumacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER Schumacher', 18)}}的其他基金
Mechanisms of cardiomyocyte-extracellular matrix interactions in cardiogenesis
心脏发生中心肌细胞-细胞外基质相互作用的机制
- 批准号:
10291550 - 财政年份:2021
- 资助金额:
$ 1.8万 - 项目类别:
Cellular and Genetic Regulation of Heart Tube Assembly in Zebrafish
斑马鱼心管组装的细胞和遗传调控
- 批准号:
7546020 - 财政年份:2008
- 资助金额:
$ 1.8万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
人机共驾型智能汽车驾驶行为特性及人机交互方法研究
- 批准号:51775396
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
- 批准号:
10556284 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Unraveling the synaptic and circuit mechanisms underlying a plasticity-driving instructive signal
揭示可塑性驱动指导信号背后的突触和电路机制
- 批准号:
10686592 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Mitigating the Impact of Stigma and Shame as a Barrier to Viral Suppression Among MSM Living with HIV and Substance Use Disorders
减轻耻辱感和羞耻感对感染艾滋病毒和药物滥用的 MSM 的病毒抑制造成的影响
- 批准号:
10683694 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别:
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 1.8万 - 项目类别: