Predicting AUD development, risk and resilience phenotypes through integration of multi-modal COGA data
通过整合多模式 COGA 数据预测 AUD 发展、风险和复原力表型
基本信息
- 批准号:10665027
- 负责人:
- 金额:$ 47.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:18 year oldAddressAdultAffectAfrican AmericanAfrican American populationAgeAlcohol dependenceAlcoholsAmericanAttention deficit hyperactivity disorderBiologicalBiological FactorsBiological MarkersBrainCause of DeathCessation of lifeCharacteristicsClassificationClinicalComplexDSM-IVDataDemographic FactorsDevelopmentDiagnosisDimensionsDiseaseDrug usageDrunk drivingEarly DiagnosisElectroencephalographyElectrophysiology (science)EnvironmentEnvironmental Risk FactorEuropeanEvaluationFamily StudyFemaleFunctional disorderGenderGeneticGenetic MarkersGenetic ModelsGenetic studyGoalsHealthHomeIndividualLearningLiteratureMachine LearningMajor Depressive DisorderMeasuresMethodsModalityModelingParticipantPerformancePhenotypePopulationPost-Traumatic Stress DisordersPredispositionPreventionPsychiatric DiagnosisPsychiatryPublic HealthQuestionnairesResearchResearch PersonnelRiskSamplingSideSingle Nucleotide PolymorphismSubgroupSurveysSymptomsTechniquesTestingTrainingTreesUnderrepresented PopulationsUnited StatesValidationWomanWorkaddictionage stratificationagedalcohol use disorderbasecohortdeep learningdemographicsdisorder riskgenetics of alcoholismgradient boostingimprovedinnovationinterestmachine learning algorithmmachine learning methodmenmodel buildingmultidisciplinarymultimodal datamultimodalityneurogeneticsneurophysiologypeerpersonalized diagnosticspersonalized medicinepolygenic risk scorepopulation stratificationprecision medicineprediction algorithmpredictive modelingpsychosocialrecruitresiliencerisk prediction modelsecondary analysissexsociodemographicssoftware development
项目摘要
Project Summary
Alcohol use disorder (AUD) is a major public health challenge in the USA and the world. In the National Survey
on Drug Use and Health (2018), 14.4 million adults aged 18 and older had AUD. This included 9.2 million men
and 5.3 million women. Furthermore, in 2014, alcohol-impaired driving fatalities accounted for 9,967 deaths in
the USA. Despite its importance, not much research has been done to identify the predisposing biological
factors that may lead to the development of AUD. While predictive models have been successful in
distinguishing between individuals with AUD and healthy controls, models identifying in advance if an individual
is prone to develop AUD, as well as the biomarkers indicating a predisposition for AUD, are still unclear. To
address this, the Collaborative Study of the Genetics of Alcoholism (COGA) of European American (EA) and
African American (AA) has recruited subjects aged 8-68, who are longitudinally followed and evaluated for
AUD over 30 years. The subjects were also assessed in terms of electrophysiology (EEG), single-nucleotide
polymorphisms (SNP), psychosocial and psychiatry evaluation and demographic questionnaires. The goal of
our proposed study is to conduct secondary analyses of COGA’s rich multimodal longitudinal data to develop
predictive models that can accurately predict vulnerability to AUD before an individual actually develops the
disorder. Machine learning (ML) methods hold particular promise to address this problem. Over the last
decade, ML methods applied to complex biomedical data have generally outperformed classical regression
approaches, suggesting that multi-dimensional modeling of genetic, biological and psychosocial data may best
reflect the underlying pathophysiology of AUD. Thus, in this project, we will leverage innovative ML methods,
especially those based on deep and ensemble learning, and the rich COGA data to develop multi-modal
predictive models of vulnerability to the disorder. Furthermore, the majority of the AUD predictive modeling
work has been conducted in EA populations, necessitating increased studies among underrepresented groups,
including AA and females, so that the benefits of precision medicine can reach all populations. Therefore, we
will conduct our predictive modeling analyses in subgroups stratified by age, sex, and ancestry (AA, EA). We
will also rigorously evaluate the developed predictive models in an independent validation set, stratified based
on the same criteria. Finally, we will employ systematic interpretation strategies for the models to identify EEG,
genetic (SNP, polygenic risk scores), psychosocial, psychiatric and demographic features that contribute most
strongly to accurate AUD prediction. At the conclusion of the secondary analysis-oriented work outlined in this
proposal, we expect to have identified an accurate, generalizable multi-modal predictive model of vulnerability
to AUD, as well as identified features that are associated with this serious disorder. Our work is likely to
contribute to a deeper understanding of this major public health challenge, as well as its personalized
diagnosis and treatment.
项目概要
根据国家调查,酒精使用障碍(AUD)是美国和世界范围内的一项重大公共卫生挑战。
根据《药物使用与健康》报告(2018 年),1440 万 18 岁及以上的成年人拥有澳元,其中包括 920 万男性。
此外,2014 年,酒精驾驶导致 9,967 人死亡。
尽管它很重要,但尚未进行太多研究来确定易感生物因素。
可能导致 AUD 发展的因素,而预测模型已取得成功。
区分 AUD 个体和健康对照者,模型提前识别个体是否
是否容易发生 AUD,以及指示 AUD 易感性的生物标志物仍不清楚。
为了解决这个问题,欧洲美国人(EA)和酒精中毒遗传学合作研究(COGA)
非裔美国人 (AA) 招募了 8-68 岁的受试者,对他们进行纵向跟踪和评估
AUD 还对受试者进行了 30 多年的电生理学 (EEG)、单核苷酸方面的评估。
多态性(SNP)、社会心理和精神病学评估以及人口调查问卷的目标。
我们提出的研究是对 COGA 丰富的多模式纵向数据进行二次分析,以开发
预测模型可以在个人实际发展之前准确预测澳元的脆弱性
机器学习 (ML) 方法特别有希望解决这个问题。
十年来,应用于复杂生物医学数据的机器学习方法普遍优于经典回归
方法,表明遗传、生物和心理社会数据的多维建模可能是最好的
反映 AUD 的潜在病理生理学,因此,在这个项目中,我们将利用创新的 ML 方法,
尤其是基于深度学习和集成学习,以及丰富的COGA数据来开发多模态
此外,大多数 AUD 预测模型。
工作已在 EA 人群中进行,因此需要加强对代表性不足群体的研究,
包括AA和女性,让精准医疗的好处惠及所有人群。因此,我们。
我们将按年龄、性别和血统(AA、EA)进行亚组的预测模型分析。
还将在独立的验证集中严格评估开发的预测模型,基于分层
最后,我们将采用系统的模型解释策略来识别脑电图,
遗传(SNP、多基因风险评分)、社会心理、精神病学和人口特征影响最大
强烈要求准确的澳元预测。
提案中,我们希望能够确定一个准确的、可推广的多模态脆弱性预测模型
澳元,以及与这种严重疾病相关的已识别特征。
有助于更深入地了解这一重大公共卫生挑战及其个性化
诊断和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivan Kinreich其他文献
Sivan Kinreich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivan Kinreich', 18)}}的其他基金
Predicting AUD development, risk and resilience phenotypes through integration of multi-modal COGA data
通过整合多模式 COGA 数据预测 AUD 发展、风险和复原力表型
- 批准号:
10446655 - 财政年份:2022
- 资助金额:
$ 47.96万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Investigation of Digital Media Use, Anxiety, and Biobehavioral Emotion Regulation in Adolescents
青少年数字媒体使用、焦虑和生物行为情绪调节的调查
- 批准号:
10814547 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Effects of Nicotine Concentration Levels in E-cigarettes on Biomarkers of Exposure to Toxicants and Tobacco Use Behaviors
电子烟中尼古丁浓度水平对有毒物质暴露和烟草使用行为生物标志物的影响
- 批准号:
10678555 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
VRSingTogether: Digital therapeutic virtual reality tool to mitigate the effects of Alzheimer's Disease (AD) and Alzheimer's-Disease-Related Dementias (ADRD)
VRSingTogether:数字治疗虚拟现实工具,可减轻阿尔茨海默病 (AD) 和阿尔茨海默病相关痴呆 (ADRD) 的影响
- 批准号:
10698251 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Using machine learning to accelerate our understanding of risks for early substance use among child-welfare and community youth
利用机器学习加速我们对儿童福利和社区青少年早期药物使用风险的了解
- 批准号:
10734004 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别: