Towards Precision Medicine for Thoracic Aortic Disease: Defining the Clinical and Genomic Drivers of Bicuspid Aortopathy
迈向胸主动脉疾病的精准医学:定义二尖瓣主动脉病的临床和基因组驱动因素
基本信息
- 批准号:10664513
- 负责人:
- 金额:$ 17.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAneurysmAortaAortic AneurysmAortic DiseasesArtificial IntelligenceArtificial Intelligence platformBicuspidBioinformaticsBirthCardiacCardiovascular DiseasesCardiovascular systemClinicalClinical MedicineCollaborationsComplexCongenital Cardiovascular AbnormalityDataData ScienceDemographic FactorsDependenceDevelopmentDiabetes MellitusDiagnosisDiameterDiseaseDisease OutcomeDisease ProgressionDissectionElectronic Health RecordEpidemiologyFaceFamilyFoundationsFrustrationFundingGeneral PopulationGenerationsGenetic Predisposition to DiseaseGenomeGenomic medicineGenomicsGoalsGuidelinesHealth systemHeritabilityHigh PrevalenceHospital MortalityHypertensionIndividualInvestigationK-Series Research Career ProgramsKnowledgeLeadershipLogistic RegressionsMentorsMethodologyMethodsModelingMorbidity - disease rateOperative Surgical ProceduresOutcomePathogenesisPatient CarePatient riskPatientsPersonsPhenotypePopulationPopulation DatabasePopulation StudyPositioning AttributePrevalencePreventionPreventive treatmentPrincipal InvestigatorProceduresRegression AnalysisResearchResearch PersonnelRiskScienceScientistStatistical MethodsSurgeonTestingThoracic aortaTrainingTranslational ResearchUniversitiesUnnecessary SurgeryUtahVariantaortic valveartificial intelligence methodbicuspid aortic valvecareercareer developmentclinical riskcohortcomorbiditydisorder riskexperiencegenetic linkage analysisgenetic pedigreegenetic variantgenome sequencinghigh riskimprovedimproved outcomeindividual patientinnovationmortalitymultidisciplinarynovelpediatric cardiologistpopulation basedprecision medicinepredictive modelingpreventprofessorprogramsprospectiverisk prediction modelrisk stratificationsexskillsstatisticssurgical risktenure tracktooltranslational scientistwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
This is a K08 Mentored Clinical Scientist Research Career Development Award for Jason P. Glotzbach, MD. Dr.
Glotzbach is a promising early career translational research clinician-scientist. He is a cardiac and aortic surgeon
and Assistant Professor of Surgery on the tenure track at the University of Utah. His primary mentor for this
proposal is Dr. Martin Tristani-Firouzi, MD, a pediatric cardiologist and expert in precision medicine and genomics
of cardiovascular disease. This proposal spans five years and includes three Research Aims and four Career
Development Aims.
Bicuspid aortic valve (BAV) is the most common congenital cardiovascular anomaly and is associated with aortic
aneurysm and aortic dissection, a condition defined as BAV aortopathy. Although both BAV and BAV aortopathy
are thought to be highly heritable conditions, the causative clinical factors and genomic variants associated with
development and progression of this disease remain poorly understood. The aim of the current proposal is to
fill this knowledge gap through a three-pronged approach: 1) we will use an innovative statistical method
called Poisson binomial comorbidity discovery to define clinical and demographic variables associated
with BAV aortopathy; 2) we will develop a predictive model for BAV aortopathy risk using a state-of-the-
art artificial intelligence method called probabilistic graphical models; and 3) we will utilize detailed
pedigree-driven whole genome sequencing analysis of multigenerational families with a high prevalence
of BAV aortopathy and patients undergoing surgery for BAV aortopathy to define genetic variants
associated with BAV aortopathy. By combining a clinical risk model with an understanding of the genomic
variants associated with BAV aortopathy, we expect to gain novel understanding of the pathogenesis of this
highly impactful clinical condition. The information produced by this line of investigation has significant promise
to help refine the clinical paradigms for treatment of aortic disease by building a foundation to allow development
of precision medicine tools to predict aortic disease risk at the individual patient level. This line of inquiry, if
successful, will lead to improved clinical outcomes in these complex and heterogenous patients.
Through pursuit of the Research Aims of this proposal, Dr. Glotzbach will develop his expertise with the
fundamental skills of statistics, predictive modeling, epidemiology, bioinformatics, genomic analysis, and
research team leadership that will enable him to build a career as an independent translational investigator.
1
项目概要/摘要
这是授予 Jason P. Glotzbach 医学博士的 K08 指导临床科学家研究职业发展奖。博士。
Glotzbach 是一位有前途的早期职业转化研究临床医生兼科学家。他是一名心脏和主动脉外科医生
犹他大学终身教授外科助理教授。他的主要导师
提议者是儿科心脏病专家、精准医学和基因组学专家 Martin Tristani-Firouzi 博士(医学博士)
心血管疾病。该提案跨越五年,包括三个研究目标和四个职业目标
发展目标。
二叶式主动脉瓣 (BAV) 是最常见的先天性心血管畸形,与主动脉瓣相关
动脉瘤和主动脉夹层,一种定义为 BAV 主动脉病的疾病。尽管 BAV 和 BAV 主动脉病
被认为是高度遗传的病症,其致病临床因素和基因组变异与
这种疾病的发生和进展仍知之甚少。当前提案的目的是
通过三管齐下的方法来填补这一知识空白:1)我们将使用创新的统计方法
称为泊松二项式合并症发现来定义相关的临床和人口统计学变量
患有 BAV 主动脉病; 2) 我们将使用最新的方法开发 BAV 主动脉病风险的预测模型
艺术人工智能方法称为概率图模型; 3)我们将利用详细的
对高患病率多代家庭进行谱系驱动的全基因组测序分析
BAV 主动脉病和接受 BAV 主动脉病手术的患者以确定遗传变异
与 BAV 主动脉病相关。通过将临床风险模型与对基因组的理解相结合
与 BAV 主动脉病相关的变异,我们期望对其发病机制有新的了解
具有高度影响的临床状况。这一系列调查产生的信息具有重大前景
通过建立允许发展的基础,帮助完善主动脉疾病治疗的临床范例
精准医疗工具可预测个体患者的主动脉疾病风险。这一行查询,如果
成功,将改善这些复杂和异质患者的临床结果。
通过追求本提案的研究目标,格洛茨巴赫博士将发展他的专业知识
统计学、预测模型、流行病学、生物信息学、基因组分析等基本技能
研究团队的领导能力将使他能够成为一名独立的转化研究者。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Paul Glotzbach其他文献
Jason Paul Glotzbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Paul Glotzbach', 18)}}的其他基金
Defining the Transcriptional Heterogeneity of Human Adipose Stromal Cells using S
使用 S 定义人类脂肪基质细胞的转录异质性
- 批准号:
7910603 - 财政年份:2010
- 资助金额:
$ 17.12万 - 项目类别:
Transcriptional Heterogeneity Individual of Human Adipose Stromal Cells
人类脂肪基质细胞的转录异质性个体
- 批准号:
8070421 - 财政年份:2010
- 资助金额:
$ 17.12万 - 项目类别:
相似国自然基金
肠道神经氨酸酶-3在主动脉瘤中的作用及机制研究
- 批准号:82300544
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
巨噬细胞参与腹主动脉瘤发生的关键基因鉴定及Trem2在腹主动脉瘤中的作用研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
流体剪切力在胸主动脉瘤向胸主动脉夹层演变中的作用及机制研究
- 批准号:12372315
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
腹主动脉瘤患者肠道噬菌体组异常及其病因学作用和机制的研究
- 批准号:82370481
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
核因子КB受体活化因子配体在腹主动脉瘤形成中的作用及机制研究
- 批准号:82370486
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
1/2 IMPRoving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
1/2 改善血管疾病的结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663037 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
- 批准号:
10716472 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别: