Learning principles from the pyrenoid, a phase-separated organelle
学习类核蛋白(一种相分离细胞器)的原理
基本信息
- 批准号:10544349
- 负责人:
- 金额:$ 50.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActivaseAlgaeAmyotrophic Lateral SclerosisArchitectureBackBindingBinding SitesBiochemical ProcessBiologicalBiological ModelsBiologyBiophysical ProcessCarbon DioxideCell physiologyCellsCellular StructuresChlamydomonasChlamydomonas reinhardtiiChloroplastsCollaborationsCouplingCryo-electron tomographyCuesDataDiseaseEnergy-Generating ResourcesEngineeringEnsureEnzymesEquilibriumExclusionExperimental ModelsFluorescence Recovery After PhotobleachingFree EnergyFunctional disorderGene ExpressionGenetic MaterialsHealthHoloenzymesImageIn VitroIndividualLearningLiquid substanceLocationMagicMalignant NeoplasmsMeasurementMediatingMembraneMetabolismMicroscopicModelingMolecularMultienzyme ComplexesMutationNatureOrganellesPhasePhysical condensationPhysiological ProcessesPositioning AttributeProcessPropertyProteinsRNARegulationRibosomesRibulose-Bisphosphate CarboxylaseRoleSignal TransductionSourceSpecificityStarchStructureSystemThylakoidsVariantVisualizationbiological adaptation to stressbiophysical modelcarbon fixationexperimental studyflexibilityhuman diseasein vivointerdisciplinary approachliquid dynamicsmodel organismmolecular dynamicsphysical propertyrecruitrepairedresponsesample fixationself assemblystoichiometrytheories
项目摘要
PROJECT ABSTRACT
Phase separation is an emerging organizing principle for intracellular biology. Processes that are now
understood to exploit phase separation include storage of genetic material, gene expression, ribosome
synthesis, signaling, stress response, and metabolism. While each phase-separating system has unique
features, there are universal themes relevant to all such systems, including regulation of the phase
boundary, the dynamics of mixing within and between condensates, and the interactions of condensates
with their surroundings. To uncover general principles regarding these common themes, we focus on a
well-suited model organism and system: the genetically tractable alga Chlamydomonas reinhardtii and
its pyrenoid, a non-membrane bound, phase-separated organelle responsible for efficient carbon fixation.
The pyrenoid offers many practical advantages: 1. its phase separation is driven by two well-
characterized components, the rigid enzyme complex Rubisco and the flexible linker protein EPYC1, via
a known specific binding interface; 2. the pyrenoid’s in vivo liquidity is reproduced in vitro with no energy
source; 3. in vivo assembly/disassembly is controllable by external cues; and 4. the pyrenoid is singular,
large, and stable enough to systematically investigate its functional interactions with other cellular
components. Based on these advantages, the pyrenoid has already proven to be a source of many
discoveries including the ability of a flexible multivalent linker to condense a rigid component, inheritance
of non-membrane bound organelles by fission, specific recruitment via a conserved binding motif, and a
magic-number effect. The key universal questions we will address with this system are: What is the role
of the valence, strength, and spacing of the interacting motifs in determining condensate properties? How
does the stability of small oligomers control phase boundaries? What keeps condensates in a liquid
state? How do cells control the number, size, and location of condensates, including their relation to other
cellular structures? Our approach will closely integrate theory and experiment, as providing fundamental
answers to these questions requires a multidisciplinary approach that places specific data within a broad
theoretical framework. We anticipate that our focus on underlying biophysical mechanisms will facilitate
generalizability of our results to a wide range of phase-separated intracellular systems.
项目摘要
相分离是目前细胞内生物学过程的一种新兴组织原理。
据了解,利用相分离包括遗传物质的储存、基因表达、核糖体
每个相分离系统都有独特的合成、信号传导、应激反应和代谢。
特征,有与所有此类系统相关的普遍主题,包括相位调节
边界、冷凝物内部和之间的混合动力学以及冷凝物的相互作用
为了揭示这些共同主题的一般原则,我们关注一个问题。
非常适合的模型生物体和系统:遗传易驯化的藻类莱茵衣藻和
它的蛋白核是一种非膜结合的相分离细胞器,负责有效的碳固定。
核糖体具有许多实际优点:1.它的相分离是由两个良好的驱动器驱动的。
特征成分,刚性酶复合物 Rubisco 和柔性连接蛋白 EPYC1,通过
2. 体内的核糖体的流动性在体外无需能量即可复制;
来源;3. 体内组装/分解可通过外部信号控制;4. 蛋白核是单一的,
大且稳定,足以系统地研究其与其他细胞的功能相互作用
基于这些优点,核糖体已被证明是许多成分的来源。
发现包括灵活的多价连接体压缩刚性成分的能力、继承
通过裂变、通过保守的结合基序进行特异性募集和
我们将用这个系统解决的关键普遍问题是:作用是什么。
相互作用基序的化合价、强度和间距如何确定凝聚态性质?
小低聚物的稳定性控制相界吗?是什么使冷凝物保持液态?
细胞如何控制凝结物的数量、大小和位置,包括它们与其他物质的关系?
细胞结构?我们的方法将紧密结合理论和实验,作为提供基础
这些问题的答案需要采用多学科方法,将特定数据置于广泛的范围内
我们预计,我们对潜在生物物理机制的关注将有助于促进这一理论框架。
我们的结果可推广到各种相分离的细胞内系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Casimir Jonikas其他文献
Martin Casimir Jonikas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Casimir Jonikas', 18)}}的其他基金
Learning principles from the pyrenoid, a phase-separated organelle
学习类核蛋白(一种相分离细胞器)的原理
- 批准号:
10322382 - 财政年份:2021
- 资助金额:
$ 50.44万 - 项目类别:
Transforming our understanding of eukaryotic gene functions through chemical genetics in the green alga Chlamydomonas reinhardtii
通过绿藻莱茵衣藻的化学遗传学改变我们对真核基因功能的理解
- 批准号:
9492909 - 财政年份:2015
- 资助金额:
$ 50.44万 - 项目类别:
Transforming our understanding of eukaryotic gene functions through chemical genetics in the green alga Chlamydomonas reinhardtii
通过绿藻莱茵衣藻的化学遗传学改变我们对真核基因功能的理解
- 批准号:
8955354 - 财政年份:2015
- 资助金额:
$ 50.44万 - 项目类别:
相似国自然基金
硅藻类C4途径及其苹果酸酶功能研究
- 批准号:42306129
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无人机巡测与多类态模型联用的湖泊水源地藻类水华集合预报研究
- 批准号:42377451
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
藻类群落结构对稀土冶选尾矿库复合污染的响应及评价体系的构建
- 批准号:42367057
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
浅水富营养化湖泊浮游藻类对底泥疏浚的响应过程模拟与机制解析
- 批准号:42371116
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
黄杆菌科细菌藻类多糖降解功能的演化机制研究
- 批准号:32370006
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Pathogens of Algae for Biocontrol and Biosecurity
用于生物防治和生物安全的藻类病原体
- 批准号:
EP/Y036808/1 - 财政年份:2024
- 资助金额:
$ 50.44万 - 项目类别:
Research Grant
ERI: Characterizing and improving algae-derived biofuel droplet burning
ERI:表征和改善藻类生物燃料液滴燃烧
- 批准号:
2301490 - 财政年份:2024
- 资助金额:
$ 50.44万 - 项目类别:
Standard Grant
CORAL:Compostable Foams from Renewable Algae Sources: development and identification of strategies for their implementation
珊瑚:可再生藻类来源的可堆肥泡沫:制定和确定其实施策略
- 批准号:
EP/Y027701/1 - 财政年份:2024
- 资助金额:
$ 50.44万 - 项目类别:
Fellowship
Molecular fossils, mass extinctions and the rise of complex algae
分子化石、大规模灭绝和复杂藻类的兴起
- 批准号:
DP240100281 - 财政年份:2024
- 资助金额:
$ 50.44万 - 项目类别:
Discovery Projects
North Carolina Center for Coastal Algae, People, and Environment NC-CAPE
北卡罗来纳州沿海藻类、人类和环境中心 NC-CAPE
- 批准号:
2414792 - 财政年份:2024
- 资助金额:
$ 50.44万 - 项目类别:
Continuing Grant