Mitochondrial mRNA structure as a driver of Leigh Syndrome
线粒体 mRNA 结构作为 Leigh 综合征的驱动因素
基本信息
- 批准号:10545718
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAerobicAffectAgeAppearanceAttenuatedBindingBinding SitesBiochemicalBioenergeticsBiogenesisBiological AssayCRISPR/Cas technologyCell LineChemicalsChildChildhoodCollaborationsComplexCultured CellsCytochrome-c Oxidase DeficiencyCytoplasmic GranulesDNADataDefectDevelopmentDevelopmental Delay DisordersDiseaseEnsureEnzymesEtiologyFunctional disorderGene ExpressionGene Expression RegulationGenesGoalsHigh-Throughput Nucleotide SequencingHumanHuman Cell LineImmunoprecipitationInfantKnock-outKnowledgeLeadLeigh DiseaseLesionLeucineMedicineMessenger RNAMissionMitochondriaMitochondrial DNAMitochondrial DiseasesMitochondrial ProteinsMitochondrial RNAModificationMolecularMutateMutationNational Institute of Child Health and Human DevelopmentNerve DegenerationNewborn InfantNuclearOxidative PhosphorylationPTGS1 genePathogenesisPathogenicityPathologyPathway interactionsPatientsPhenotypePhysiciansPhysiologicalPoly APolyadenylationPolyadenylation PathwayPropertyProtein BiosynthesisProteinsRNARNA FoldingRNA ProcessingRNA StabilityRNA metabolismRegulationRespiratory ChainRibonucleosidesRibosomal RNARoleScientistStructural ModelsStructural defectStructureSystemTechnologyTestingTherapeuticTrainingTrans-ActivatorsTranscriptTranscription ProcessTransfer RNATranslationsVariantbasecell typecomplex IVcrosslinkcytochrome c oxidasedimethyl sulfategenetic variantinnovationinterestmRNA ExpressionmRNA StabilitymRNA Translationmitochondrial messenger RNAmouse modelmutantoligomycin sensitivity-conferring proteinpolyadenylated messenger RNApolypeptideposttranscriptionalpreventreconstitutionribosome profilingskillssuccesstherapeutic targettranscriptome
项目摘要
Leigh syndrome (LS) is a mitochondrial disease that causes irreversible developmental regression in children.
Currently, no treatment options are available, and most children do not live to see their second birthday. LS is
biochemically characterized by defective mitochondrial bioenergetics due to a variety of possibly mutated
mitochondrial proteins, which can be encoded in both mitochondrial and nuclear DNA. Here, we will focus on
two LS proteins: leucine rich pentacotripeptide repeat motif containing protein (LRPPRC), and transactivator of
COXI (TACO1). Loss of LRPPRC decreases stability of all mRNAs, and also leads to loss of mRNA
polyadenylation and the appearance of aberrant mitochondrial translation. Loss of TACO1 specifically prevents
translation of COX1 mRNA. Despite this knowledge, the molecular mechanisms involved remain unknown.
RNAs fold into complex structures that are integral to the diverse mechanisms underlying RNA regulation
of gene expression. Recent development of RNA structure profiling through the application of structure-probing
chemicals combined with high-throughput sequencing (such as DMS-MaPseq) has opened a new field that
enormously expands the amount of RNA structural information available. With this technology available, here
we propose to test the hypothesis that mutations in either LRPPRC or TACO1 lead to a downstream defect
in the folding of mitochondrial mRNAs and subsequently to aberrant mtDNA gene expression. To test
this hypothesis, we will follow two Aims and will use human cell lines knockout (KO) for each gene, which we
are generating by using innovative CRISPR-Cas9 gene-editing approaches. In Aim 1, the KO lines will be
reconstituted with wild-type or disease mutant gene variants and characterized physiologically in terms of cellular
and mitochondrial bioenergetics, mitochondrial RNA processing and stability, as well as mitochondrial translation.
Preliminary data on already available LRPPRC-KO cell lines have informed mitochondrial phenotypes
compatible with those of LS patients. This will follow with establishment of in-cello mRNA binding sites of these
proteins in wild-type cells using PAR-CLIP approaches. Finally, we will utilize ribosome-profiling assays to
determine whether LRPPRC and TACO1 are binding their target mRNAs during translation. In Aim 2 we will use
DMS-MaPseq to probe the native structures of the entire mitochondrial transcriptome in the KO and reconstituted
cell lines. To ensure success in this undertaking, we will capitalize on our collaboration with Dr. Silvia Rouskin,
the pioneer of DMS-MaPseq. We expect to answer basic questions regarding how these proteins interact with
mRNA, affect their folding, and ultimately their stability, modification and translation. To fully understand the
basic pathogenic mechanisms underlying the several LS forms is critical to the NICHD mission and a
fundamental pre-requisite to develop therapeutics to target this kind of disorders. With this perspective, the
proposed project is tailored to my training towards becoming a skilled physician scientist.
Leigh 综合征 (LS) 是一种线粒体疾病,会导致儿童不可逆转的发育退化。
目前,没有可用的治疗方案,大多数儿童都活不到两岁生日。 LS 是
生化特征是由于多种可能突变导致的线粒体生物能缺陷
线粒体蛋白,可以在线粒体和核 DNA 中编码。在这里,我们将重点关注
两种 LS 蛋白:富含亮氨酸的五肽重复基序含有蛋白 (LRPPRC) 和
考西(TACO1)。 LRPPRC 的丢失会降低所有 mRNA 的稳定性,并导致 mRNA 丢失
多聚腺苷酸化和线粒体翻译异常的出现。 TACO1 的缺失可以特别预防
COX1 mRNA 的翻译。尽管有了这些知识,但所涉及的分子机制仍然未知。
RNA 折叠成复杂的结构,这些结构是 RNA 调控的多种机制不可或缺的一部分
的基因表达。通过结构探测应用进行 RNA 结构分析的最新进展
化学品与高通量测序(如DMS-MaPseq)相结合开辟了一个新领域
极大地扩展了可用RNA结构信息的数量。有了这项技术,这里
我们建议检验 LRPPRC 或 TACO1 突变导致下游缺陷的假设
线粒体 mRNA 的折叠以及随后异常的 mtDNA 基因表达。测试
在这个假设中,我们将遵循两个目标,并对每个基因使用人类细胞系敲除(KO),我们
是通过使用创新的 CRISPR-Cas9 基因编辑方法生成的。在目标 1 中,KO 线将是
用野生型或疾病突变基因变体重建,并根据细胞特征进行生理学表征
线粒体生物能学、线粒体 RNA 加工和稳定性,以及线粒体翻译。
现有 LRPPRC-KO 细胞系的初步数据已揭示线粒体表型
与 LS 患者的情况相符。随后将建立这些细胞内 mRNA 结合位点
使用 PAR-CLIP 方法分析野生型细胞中的蛋白质。最后,我们将利用核糖体分析测定来
确定 LRPPRC 和 TACO1 在翻译过程中是否结合其目标 mRNA。在目标 2 中我们将使用
DMS-MaPseq 用于探测 KO 中整个线粒体转录组的天然结构并进行重组
细胞系。为了确保这项事业取得成功,我们将利用与 Silvia Rouskin 博士的合作,
DMS-MaPseq 的先驱。我们期望回答有关这些蛋白质如何相互作用的基本问题
mRNA,影响它们的折叠,并最终影响它们的稳定性、修饰和翻译。为了充分了解
几种 LS 形式背后的基本致病机制对于 NICHD 的使命至关重要,并且
开发针对此类疾病的治疗方法的基本先决条件。从这个角度来看,
拟议的项目是针对我成为一名熟练的医师科学家的培训而量身定制的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Conor Moran其他文献
John Conor Moran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Conor Moran', 18)}}的其他基金
Mitochondrial mRNA structure as a driver of Leigh Syndrome
线粒体 mRNA 结构作为 Leigh 综合征的驱动因素
- 批准号:
10388656 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
有氧运动及HDAC4/5对骨骼肌细胞代谢酶乙酰化的影响及其在改善胰岛素抵抗过程中机制研究
- 批准号:32371186
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
从“动而中节”探讨有氧运动调节线粒体动力学影响乳酸穿梭在肝癌预防中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动与视频游戏的联合训练对老年人记忆及海马可塑性的影响
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
CHRONO-BMAL1通路调节骨骼肌糖代谢及其影响有氧运动能力的分子机制
- 批准号:32071168
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
有氧运动通过HDAC4影响线粒体能量代谢改善梗死后心力衰竭机制研究
- 批准号:81800348
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial mRNA structure as a driver of Leigh Syndrome
线粒体 mRNA 结构作为 Leigh 综合征的驱动因素
- 批准号:
10388656 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Impact of organic cations on mitochondrial energetic driving forces and metabolic efficiency
有机阳离子对线粒体能量驱动力和代谢效率的影响
- 批准号:
9169876 - 财政年份:2016
- 资助金额:
$ 5.27万 - 项目类别:
Impact of organic cations on mitochondrial energetic driving forces and metabolic efficiency
有机阳离子对线粒体能量驱动力和代谢效率的影响
- 批准号:
9306069 - 财政年份:2016
- 资助金额:
$ 5.27万 - 项目类别:
Is GLUT1 required for tumor growth and the Warburg Effect?
肿瘤生长和瓦尔堡效应需要 GLUT1 吗?
- 批准号:
8505396 - 财政年份:2011
- 资助金额:
$ 5.27万 - 项目类别:
Is GLUT1 required for tumor growth and the Warburg Effect?
肿瘤生长和瓦尔堡效应需要 GLUT1 吗?
- 批准号:
8333385 - 财政年份:2011
- 资助金额:
$ 5.27万 - 项目类别: