Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
基本信息
- 批准号:7361836
- 负责人:
- 金额:$ 13.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-07 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:BehaviorBiologyBiometryCancer PatientCharacteristicsClinicalClinical TrialsCollaborationsComplexDataData AdjustmentsData AnalysesDevelopmentDropoutEffectiveness of InterventionsEnd PointFamilyFoundationsGoalsGrantHealthHealth ProfessionalJointsKnowledgeMalignant NeoplasmsMeasurementMeasuresMental HealthMentored Research Scientist Development AwardMentorsMethodologyMethodsModalityModelingNatureObservational StudyOutcomePatient Self-ReportPatientsPerformancePopulationProcessPsyche structurePublic HealthRandomizedRangeResearchResearch PersonnelSamplingSolidTechniquesTestingTimeTraininganticancer researchbasecancer epidemiologydesignimprovedsimulation
项目摘要
DESCRIPTION (provided by applicant): Measurement of outcomes related to the quality of physical and mental health states in population-based cancer studies has increased in recent years as more and more researchers realize the importance of such endpoints. These endpoints are measured alongside conventional clinical outcomes and for the most part rely on patient self- report. A key problem has been missing data as patients may die or may be too sick to complete the study. This loss of information represents, besides the loss of efficiency, a potentially large threat to validity of the study results. There is strong evidence that such data are not missing at random, and cannot be ignored without introducing bias. Two extreme views on how to deal with incomplete data are (1) to delete cases with incomplete information altogether and (2) to construct complicated joint models for the measurement and missingness processes. These extreme views are surrounded with problems, largely due to the untestable nature of the assumptions one has to make regarding the missingness mechanism. A more versatile methodology that embeds the treatment of incomplete data within a sensitivity analysis is then required. Developing such a methodology necessitates extensive knowledge of biology and epidemiology of cancer. The K01 mechanism will help integrate mentoring and formal basic training in cancer research with prior training in Biostatistics and Population Health by building on a solid foundation in the development of new statistical methodologies for handling missing data. The research plan integrates training and mentoring to study, for example, how baseline and time dependent characteristics impact cancer patients' functional and mental states across time with missing data adjustment. Our approach is to develop a family of non ignorable models with sensitivity parameters that can be interpretable by subject matter experts. A global sensitivity analysis for the proposed non-ignorable models will be developed and implemented in the context of estimation and hypothesis testing using the classical frequentist approach and the Bayesian posterior predictive check principle. And finally, central theoretical questions about the proposed methods will be investigated using both analytic techniques and Monte Carlo simulations. A key goal of this K01 grant mechanism is to improve our ability to help, through collaborations, design complex clinical trials and observational studies in cancer research, analyze the generated data while adjusting for dropouts and missing data, and interpret the findings to public health professionals and the public.
描述(由申请人提供):近年来,随着越来越多的研究人员意识到此类终点的重要性,近年来,与身体和心理健康状况相关的结果的测量已经有所增加。这些终点是与常规临床结果一起测量的,并且在很大程度上取决于患者的自我报告。关键问题是缺少数据,因为患者可能死亡或可能太病了,无法完成研究。信息丢失还代表了除效率的丧失外,还可能对研究结果的有效性构成了很大的威胁。有强有力的证据表明,此类数据并非随机缺失,并且如果不引入偏见,就不能忽略。关于如何处理不完整数据的两种极端观点是(1)完全删除信息不完整的信息,以及(2)构建复杂的关节模型,以进行测量和丢失过程。这些极端的观点被问题所包围,这主要是由于人们对丢失机制必须做出的假设的不可测试的性质。然后需要一种更通用的方法,该方法将不完整数据的处理嵌入灵敏度分析中。开发这种方法学需要广泛了解癌症的生物学和流行病学。 K01机制将通过在开发新的统计方法来处理丢失数据的新统计方法中建立坚实的基础,从而有助于将癌症研究中的指导和正式基础培训与先前的生物统计和人群健康培训相结合。该研究计划将培训和指导整合到研究中,例如基线和时间依赖的特征如何影响癌症患者的功能和精神状态,而数据调整缺失。我们的方法是开发一个具有敏感性参数的非忽视模型家庭,可以由主题专家解释。将在估算和假设测试的背景下使用经典的频繁方法和贝叶斯后后预测检查原理开发和实施对所提出的不可忽视模型的全球灵敏度分析。最后,将使用分析技术和蒙特卡洛模拟研究有关提出方法的中心理论问题。该K01赠款机制的一个关键目标是通过协作,设计复杂的临床试验和癌症研究中的观察性研究来提高我们的帮助,分析生成的数据,同时调整辍学和缺失数据,并向公共卫生专业人员和公众解释发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID TODEM其他文献
DAVID TODEM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID TODEM', 18)}}的其他基金
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
- 批准号:
7933397 - 财政年份:2009
- 资助金额:
$ 13.06万 - 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
- 批准号:
7652542 - 财政年份:2008
- 资助金额:
$ 13.06万 - 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
- 批准号:
8291020 - 财政年份:2008
- 资助金额:
$ 13.06万 - 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
- 批准号:
8077897 - 财政年份:2008
- 资助金额:
$ 13.06万 - 项目类别:
Adjusting for Non-ignorable Missing Data in Population-Based Cancer Research
调整基于人群的癌症研究中不可忽略的缺失数据
- 批准号:
7884285 - 财政年份:2008
- 资助金额:
$ 13.06万 - 项目类别:
Statistical Methods for Complex Dependent Dental Data
复杂相关牙科数据的统计方法
- 批准号:
6907997 - 财政年份:2005
- 资助金额:
$ 13.06万 - 项目类别:
Statistical Methods for Complex Dependent Dental Data
复杂相关牙科数据的统计方法
- 批准号:
7077718 - 财政年份:2005
- 资助金额:
$ 13.06万 - 项目类别:
相似国自然基金
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
脉络膜黑色素瘤循环血内肿瘤细胞的捕获、扩增、生物学特征分析与外泌体载药模型构建的研究
- 批准号:82303540
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多时序多模态MR特征和人工智能技术构建骨肉瘤预后的早期预测模型及其生物学可解释性研究
- 批准号:82373108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肝癌核磁共振影像组学特征的肿瘤生物学意义及其机制研究
- 批准号:82372037
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
土壤缓步动物的形态学和分子生物学鉴定及其分布特征
- 批准号:42377288
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Social and Dietary Determinants of Kidney Stone Risk
肾结石风险的社会和饮食决定因素
- 批准号:
10643740 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
- 批准号:
10591362 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Multi-Omics Predictors of Oral HPV Outcomes among PLWH
PLWH 口腔 HPV 结果的多组学预测
- 批准号:
10557585 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
Vulnerability Profiles of Comorbid Alzheimer and TDP-43 Proteinopathies in Amnestic Dementia
遗忘性痴呆中共病阿尔茨海默病和 TDP-43 蛋白病的脆弱性概况
- 批准号:
10901010 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别:
The effect of gestational age at delivery on lactation outcomes in pump-dependent mothers of critically ill infants
分娩孕周对危重婴儿依赖泵的母亲哺乳结局的影响
- 批准号:
10662962 - 财政年份:2023
- 资助金额:
$ 13.06万 - 项目类别: