Global Lipidomics Analysis Techniques for Novel Biomarker Discovery of Environmental Enteropathy
用于环境肠病新生物标志物发现的全球脂质组学分析技术
基本信息
- 批准号:10663197
- 负责人:
- 金额:$ 1.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBiological AssayBiological MarkersCessation of lifeChargeChildChild HealthChild MalnutritionChildhoodChromatographyChronicClinical ResearchCohort StudiesComputing MethodologiesDataData AggregationData AnalysesData SetDatabasesDeveloping CountriesDevelopmentDuodenumEnvironmental ImpactFoundationsFutureGastrointestinal DiseasesGastrointestinal EndoscopyIndividualInflammationInterventionIsomerismKnowledgeLipidsMalabsorption SyndromesMalnutritionMass Spectrum AnalysisMethodologyMethodsModelingMorbidity - disease rateMorphologic artifactsMotivationNutrientPathway AnalysisPathway interactionsPatientsPattern RecognitionPhenotypePlasmaPopulation StudyReportingReproducibilityReproducibility of ResultsResearchRunningSample SizeSamplingSerumSmall IntestinesStructureTechniquesTestingTimeUrineVariantWorkanalysis pipelineanalytical toolaspiratebiomarker discoverybiomarker validationcandidate identificationcandidate markercohortcomorbiditycomputational pipelinesdata complexitydesigndiagnostic biomarkerdisease phenotypedisorder controlimprovedinsightlarge scale datalipidomelipidomicsliquid chromatography mass spectrometrymortalitynoninvasive diagnosisnonlinear regressionnovelnovel markerpersonalized medicinetooltreatment planningvalidation studies
项目摘要
Project Summary/Abstract
As a condition of the small intestine, environmental enteropathy causes to chronic inflammation and
malabsorption of nutrients leading it to present itself phenotypically similar to malnutrition. Separation and
identification of patients with environmental enteropathy from malnutrition can only be done via an invasive upper
gastrointestinal endoscopy. In an effort to better characterize and understand environmental enteropathy, global
lipidomics profiling was performed on plasma, urine, and duodenal aspirate samples of a large cohort clinical
study of 415 Pakistani children. Larger sample sizes introduces technical challenges, such as the need to run
samples in batches, which in turn presents computational challenges of analysis. This proposal is focused on
the development of data-dependent methodologies for untargeted lipidomics analysis to identify robust lipid
profiles unique to each environmental enteropathy and malnutrition.
The first aim of this proposed research is to design a multi-batch analysis pipeline to efficiently and accurately
aggregate data across the various batches. This pipeline will address 3 computational challenges of multi-
batched data: 1) chromatographic retention time alignment, 2) missing data imputation, and 3) batch effect
correction. Each of these challenges have been analyzed individually, but in data analysis each step is
dependent on and influenced by the prior one. Development of an integrated, data-dependent pipeline specific
to mass spectrometry data will allow for reproducible results. The pipeline will be evaluated for accuracy via
testing on various sample matrices and by comparison to existing algorithms.
The proposed second aim is the development of a pathway-based data-dependent tool for putative lipid
identification. A bottleneck of untargeted analysis is the rapid identification of compounds. Due to the volume of
data, the current approach of only identifying those features which are statistically significant creates gaps in
downstream work such as pathway analysis. Introducing pathway knowledge earlier in the workflow will yield in
more meaningful results. This approach uses an initial input of lipids unique to the study and builds a networks
of additional connected lipids. These new lipids are stored in a database and a search is performed for them in
the user’s data. Identification of lipids with this methods will lead to a more complete network profile of results.
This project will identify distinctive lipidome profiles of environmental enteropathy patients and separate them
from a larger malnutrition disease control cohort. This initial step will lay the foundation for future validation
studies and ultimately the utilization of non-invasive diagnostics markers of environmental enteropathy, leading
to improved health of these children. As large-scale studies steadily become more common and to answer the
resulting computational challenges, this project will produce data-dependent methodologies for untargeted multi-
batch mass spectrometry lipidomics analysis which can then be personalized for future lipidomics studies.
项目概要/摘要
作为一种小肠疾病,环境性肠病会导致慢性炎症和
营养吸收不良导致其表现出与营养不良相似的表型。
环境性肠病患者与营养不良的鉴别只能通过侵入性上消化道检查来完成
为了更好地表征和了解全球环境性肠病。
对大型临床队列的血浆、尿液和十二指肠抽吸样本进行脂质组学分析
对 415 名巴基斯坦儿童进行的研究带来了技术挑战,例如跑步的需要。
批量采样,这反过来又带来了分析的计算挑战。
开发用于非靶向脂质组学分析的数据依赖方法,以识别稳健的脂质
每种环境性肠病和营养不良都有其独特的特征。
这项研究的首要目标是设计一个多批次分析流程,以高效、准确地
该管道将跨多个批次聚合数据,以解决多方面的 3 个计算挑战。
批量数据:1) 色谱保留时间对齐,2) 缺失数据插补,以及 3) 批量效应
这些挑战中的每一个都已单独分析,但在数据分析中,每个步骤都是独立的。
依赖于前一个管道并受前一个管道的影响。
质谱数据将允许获得可重复的结果,并将通过以下方式评估管道的准确性。
对各种样本矩阵进行测试并与现有算法进行比较。
拟议的第二个目标是开发一种基于途径的数据依赖工具,用于假定的脂质
由于化合物的体积,非靶向分析的一个瓶颈是快速鉴定。
数据,当前仅识别那些具有统计显着性的特征的方法在
在工作流程的早期引入路径分析等下游工作将产生效果。
这种方法使用研究特有的脂质初始输入并建立一个网络。
这些新的脂质被存储在数据库中,并在以下位置进行搜索:
使用这种方法识别脂质将产生更完整的网络结果概况。
该项目将鉴定环境性肠病患者独特的脂质组谱并将其分离
来自更大的营养不良疾病控制队列的这一初步步骤将为未来的验证奠定基础。
研究并最终利用环境性肠病的非侵入性诊断标记物,领先
随着大规模研究逐渐变得普遍,并回答这些问题,以改善这些儿童的健康。
由此产生的计算挑战,该项目将为非目标多目标产生依赖于数据的方法
批量质谱脂质组学分析,然后可以针对未来的脂质组学研究进行个性化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khyati Mehta其他文献
Khyati Mehta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khyati Mehta', 18)}}的其他基金
Global Lipidomics Analysis Techniques for Novel Biomarker Discovery of Environmental Enteropathy
用于环境肠病新生物标志物发现的全球脂质组学分析技术
- 批准号:
10537670 - 财政年份:2022
- 资助金额:
$ 1.55万 - 项目类别:
相似国自然基金
基于大数据的社交网络用户异常检测生物智能算法与系统研究
- 批准号:61762018
- 批准年份:2017
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于蚁群算法的数字微流控生物芯片在线测试研究
- 批准号:61671164
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
面向新一代测序的癌症拷贝数异常检测及其关键变异的计算发现研究
- 批准号:61571414
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
生物视觉和认知心理学启发的目标检测算法研究
- 批准号:61403412
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于生物免疫学中危险理论的入侵检测研究
- 批准号:61240023
- 批准年份:2012
- 资助金额:18.0 万元
- 项目类别:专项基金项目
相似海外基金
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Functional analysis of ESRP1/2 and CTNND1 gene variants in orofacial cleft
ESRP1/2和CTNND1基因变异在口面裂中的功能分析
- 批准号:
10565102 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Combining Machine Learning and Nanofluidic Technology for The Multiplexed Diagnosis of Pancreatic Adenocarcinoma
结合机器学习和纳流体技术进行胰腺癌的多重诊断
- 批准号:
10613226 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别: