Molecular and sensory foundations of vestibular reflex circuit assembly in the larval zebrafish
斑马鱼幼虫前庭反射回路组件的分子和感觉基础
基本信息
- 批准号:10662257
- 负责人:
- 金额:$ 4.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAfferent NeuronsAgeAnatomyArchitectureBehaviorBehavioralBehavioral MechanismsBehavioral ParadigmBiological AssayBrain StemCellsComputer ModelsDataDevelopmentDevelopmental ProcessDiseaseEquilibriumEyeEye MovementsFoundationsFunctional disorderFutureGene Transfer TechniquesGeneticGenetic TranscriptionGoalsHead MovementsImpaired healthInterneuronsKnowledgeLearningLinkLogicMeasuresMissionModelingModernizationMolecularMolecular ProfilingMotorMotor NeuronsNatureNeurodevelopmental DisorderNeurogliaNeuronsNeurosciencesNosePathologyPeripheralPhasePopulationPostdoctoral FellowPrincipal InvestigatorProcessPublic HealthResearchResearch Project GrantsRoleRotationSensoryShapesSignal TransductionSpecificityStereotypingSynapsesSystemTechniquesTrainingTransgenic OrganismsUnited States National Institutes of HealthVertebratesWorkZebrafishaxon guidancecandidate identificationgazeholistic approachin vivoinsightloss of functionnervous system disorderneural circuitoculomotoroptogeneticsprogramstooltwo-photonvestibular reflex
项目摘要
PROJECT SUMMARY: Behavioral dysfunction in neurodevelopmental diseases often arises from aberrant
neural circuit assembly. However, the developmental logic that dictates circuit organization, function, and
ultimately behavior remains unresolved due to the complexity of most circuits. Gaze stabilization behavior in
the larval zebrafish is an ideal model to understand the mechanisms that assemble functional neural circuits.
Vertical gaze stabilization leverages simple architecture: all vertebrates use three cellular populations
(peripheral sensory neurons, central vestibular projection neurons, and extraocular motor neurons) to
transform nose-up or nose-down head movements into compensatory eye rotations. Among vertebrates, the
zebrafish is particularly tractable for its genetic accessibility, transparency, and rapid external development.
Previously, I discovered that the gaze stabilization circuit is topographically organized, and that this topography
develops in a distinct temporal progression. I aim to leverage this organization to understand the contributions
of motor and sensory partner populations to neural circuit development. With a genetic loss-of-function tool, I
have already demonstrated that that motor partners are dispensable for gaze stabilization circuit development.
The goal of the proposed research is twofold: 1) To define the developmental contributions of sensory
partner populations to gaze stabilization circuit topography, function, and behavior (F99), and 2) To
illuminate mechanisms by which specific molecules dictate functional circuit assembly (K00). In Aim 1
(F99), I will train to perturb subsets of peripheral vestibular sensory neurons during development. Following
peripheral perturbations, I will use a validated optogenetically-evoked behavioral paradigm to assay changes in
functional circuit topography and assembly. These data will provide insight into types of developmental signals
(e.g., activity-dependent, trophic, or morphogenic) that assemble the gaze stabilization circuit. More broadly,
the deliverables will speak to sensory contributions to neural circuit assembly. In Aim 2 (K00), I will select a
postdoctoral lab to investigate the genetic foundations of functional neural circuit assembly using modern
sequencing and computational approaches. I will integrate these molecular insights with anatomical, functional,
and behavioral readouts of proper circuit assembly. Completion of this aim will train me to elucidate how
genetically-defined developmental programs determine circuit organization, function, and behavior.
Collectively, my training will strengthen my holistic approach to understanding mechanisms that
govern typical neural circuit assembly and function. I will use this approach in my own lab to illuminate
mechanisms of behavioral dysfunction in neurodevelopmental diseases.
项目摘要:神经发育疾病中的行为功能障碍通常由异常行为引起
神经回路组装。然而,决定电路组织、功能和功能的发展逻辑
由于大多数电路的复杂性,最终的行为仍未得到解决。凝视稳定行为
斑马鱼幼虫是理解功能神经回路组装机制的理想模型。
垂直凝视稳定性利用简单的架构:所有脊椎动物都使用三种细胞群
(外周感觉神经元、中央前庭投射神经元和眼外运动神经元)
将鼻子向上或鼻子向下的头部运动转化为补偿性眼球旋转。在脊椎动物中,
斑马鱼因其遗传可及性、透明度和快速的外部发育而特别容易驯服。
之前,我发现凝视稳定回路是按地形组织的,并且这种地形
以明显的时间进程发展。我的目标是利用这个组织来了解贡献
运动和感觉伙伴群体对神经回路发育的影响。借助遗传功能丧失工具,我
已经证明,运动伙伴对于凝视稳定电路的开发是可有可无的。
拟议研究的目标有两个:1)定义感官的发展贡献
伴侣群体凝视稳定回路的地形、功能和行为 (F99),以及 2)
阐明特定分子决定功能电路组装 (K00) 的机制。目标 1
(F99),我将训练在发育过程中扰乱外周前庭感觉神经元的子集。下列的
外周扰动,我将使用经过验证的光遗传学诱发行为范例来分析
功能电路拓扑和组装。这些数据将提供对发育信号类型的深入了解
(例如,活动依赖性、营养性或形态发生)组装凝视稳定回路。更广泛地说,
交付成果将讨论感官对神经回路组装的贡献。在目标 2 (K00) 中,我将选择一个
博士后实验室利用现代技术研究功能性神经回路组装的遗传基础
排序和计算方法。我会将这些分子见解与解剖学、功能学、
以及正确电路组装的行为读数。完成这个目标将训练我阐明如何
基因定义的发育程序决定了电路的组织、功能和行为。
总的来说,我的培训将加强我理解机制的整体方法
控制典型的神经回路组装和功能。我将在我自己的实验室中使用这种方法来阐明
神经发育疾病中行为功能障碍的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dena Goldblatt其他文献
Dena Goldblatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dena Goldblatt', 18)}}的其他基金
Molecular and sensory foundations of vestibular reflex circuit assembly in the larval zebrafish
斑马鱼幼虫前庭反射回路组件的分子和感觉基础
- 批准号:
10541342 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Microbiome Contributions to Age-Associated Cognitive Decline
微生物组对年龄相关认知能力下降的影响
- 批准号:
10605551 - 财政年份:2023
- 资助金额:
$ 4.23万 - 项目类别:
Molecular and sensory foundations of vestibular reflex circuit assembly in the larval zebrafish
斑马鱼幼虫前庭反射回路组件的分子和感觉基础
- 批准号:
10541342 - 财政年份:2022
- 资助金额:
$ 4.23万 - 项目类别:
The Molecular Regulation of Horizontal Basal Cell Activation in the Olfactory Epithelium
嗅觉上皮水平基底细胞激活的分子调控
- 批准号:
10331806 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别:
The Molecular Regulation of Horizontal Basal Cell Activation in the Olfactory Epithelium
嗅觉上皮水平基底细胞激活的分子调控
- 批准号:
10201180 - 财政年份:2020
- 资助金额:
$ 4.23万 - 项目类别: