Improving the Measurement of Brain-Behavior Associations in Adolescence

改善青春期大脑行为关联的测量

基本信息

  • 批准号:
    10525501
  • 负责人:
  • 金额:
    $ 6.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Abstract The effect of analytic flexibility on brain-behavior relationships and predictive models of adolescent socioemotional processing is not well understood. The Maturational Imbalance (or Dual System) Model often lacks reliability and generalizability. Existing work has predominately focused on single task-designs and small samples (median < 50) concentrating on brain-behavior associations using disparate operationalizations of reward and affective processing. The proposed research will integrate three developmental functional magnetic resonance imaging (fMRI) samples (N ~ 105; N ~ 180; N ~ 7,000), with analogous reward and affective paradigms, to investigate key issues related to reproducibility and generalizability: (a) the influence of analytic flexibility on brain-behavior associations and convergence and predictive validity in contrasts within/between task domains; and (b) uncovering task-based fMRI (t-fMRI) brain features (latent neural characteristics) that can serve as the basis for robust brain-behavior prediction models across multiple samples. It is hypothesized that t-fMRI contrasts can be separated across a multidimensional plane of attention and valence, which elicits neural responses leading to approach or avoidance. However, how researchers operationalize positive and negative valence in t-fMRI often varies, and this variability in the decision-making process may influence the underlying neural effects. Aim 1a will examine how brain-behavior associations in a given task change based on analytic decisions relating to fitting general linear models (GLM), contrasts and neural regions. Then, Aim 1b will consider whether changes in brain-behavior associations (as a functional of analytic flexibility) are reflected in changes in construct validity of approach and avoidance within- and between-task domains, such as reward and affective processing. Conversely, traditional univariate GLM approaches show mounting issues in test-retest reliability and express associations that may not support generalizable prediction of behavioral phenotypes. However, the neurodevelopmental literature has proposed that multivariate analyses that leverage dimensionality reduction and machine learning can provide informative brain-behavior prediction models. To test this hypothesis, in Aim 2, dimensionality reduction will be used in a large adolescent t-fMRI sample to generate brain-behavior prediction models and compared across a reward and affective task to consider the influence of constructs. Aim 3 will focus on the dissemination of code and fMRI statistical maps. The fellowship will support the applicant's growth in becoming an independent researcher and leader in the neurodevelopmental neuroscience by providing training in: combining t-fMRI datasets, evaluating the effect of analytic flexibility in fMRI and impact on construct validity, applying dimensionality reduction in neurodevelopmental samples to produce brain-behavior prediction models. This training will support the applicant's long-term goals of understanding of neural mechanisms in adolescent substance use and improving our understanding of traditional and non-traditional measurement models.
项目摘要 分析灵活性对青少年大脑行为关系和预测模型的影响 社会情绪处理尚不清楚。成熟不平衡(或双系统)模型通常 缺乏可靠性和普遍性。现有的工作主要集中在单一任务设计和小型任务设计上。 样本(中位数< 50)专注于使用不同的操作化的大脑行为关联 奖励和情感处理。拟议的研究将整合三种发育功能磁 共振成像 (fMRI) 样本 (N ~ 105; N ~ 180; N ~ 7,000),具有类似的奖励和情感 范式,研究与再现性和普遍性相关的关键问题:(a) 分析的影响 大脑行为关联的灵活性以及任务内/之间对比的收敛性和预测有效性 域; (b) 揭示基于任务的功能磁共振成像 (t-fMRI) 大脑特征(潜在神经特征) 作为跨多个样本的稳健大脑行为预测模型的基础。据推测,t-fMRI 对比可以在注意力和效价的多维平面上进行分离,从而引发神经元 导致接近或回避的反应。然而,研究人员如何运用积极和消极的 t-fMRI 中的价经常变化,决策过程中的这种变化可能会影响潜在的 神经效应。目标 1a 将检查给定任务中大脑行为关联如何根据分析发生变化 与拟合一般线性模型 (GLM)、对比和神经区域相关的决策。然后,目标 1b 将考虑 大脑行为关联的变化(作为分析灵活性的函数)是否反映在 构建任务域内和任务域之间的方法和回避的有效性,例如奖励和情感 加工。相反,传统的单变量 GLM 方法在重测可靠性方面显示出越来越多的问题 并表达可能不支持行为表型的普遍预测的关联。然而, 神经发育文献提出利用降维的多变量分析 机器学习可以提供信息丰富的大脑行为预测模型。为了检验这个假设,在 Aim 2、大量青少年t-fMRI样本将采用降维来生成大脑行为预测 模型并在奖励和情感任务之间进行比较,以考虑结构的影响。目标3将重点 关于代码和功能磁共振成像统计图的传播。该奖学金将支持申请人的成长 通过提供培训成为神经发育神经科学的独立研究员和领导者 在:结合 t-fMRI 数据集,评估 fMRI 中分析灵活性的效果以及对结构有效性的影响, 在神经发育样本中应用降维来生成大脑行为预测模型。 该培训将支持申请人了解青少年神经机制的长期目标 物质使用并提高我们对传统和非传统测量模型的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Demidenko其他文献

Michael Demidenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Demidenko', 18)}}的其他基金

Improving the Measurement of Brain-Behavior Associations in Adolescence
改善青春期大脑行为关联的测量
  • 批准号:
    10646218
  • 财政年份:
    2022
  • 资助金额:
    $ 6.95万
  • 项目类别:

相似国自然基金

社交媒体使用对青少年健康危险行为的预测效应及作用机制:基于数字疗法的自我干预与健康管理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
青少年电动自行车危险驾驶行为与其心理行为的关联及干预研究
  • 批准号:
    82260667
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
青少年危险性行为的多维社会生态影响因素交互机制及多元整合干预模式研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
睡眠时型、社会时差和生物钟关键基因遗传变异交互作用与青少年健康危险行为聚集现象的队列研究
  • 批准号:
    82073578
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
“歧视感知”影响青少年男男性行为人群危险性行为的中介效应研究
  • 批准号:
    81673196
  • 批准年份:
    2016
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 6.95万
  • 项目类别:
RP1 Screen 2 Prevent
RP1 屏蔽 2 预防
  • 批准号:
    10595901
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Longitudinal examination of emotional reactivity and reactive aggression linking threat exposure with childhood self-injurious thoughts and behaviors
将威胁暴露与儿童自伤思想和行为联系起来的情绪反应和反应性攻击的纵向检查
  • 批准号:
    10734437
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Computational and neurodevelopmental mechanisms of memory-guided decision-making
记忆引导决策的计算和神经发育机制
  • 批准号:
    10723314
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Neurobehavioral consequences of Mild Traumatic Brain Injury and addiction risk: a cotwin-control study
轻度创伤性脑损伤和成瘾风险的神经行为后果:一项 cotwin 对照研究
  • 批准号:
    10803512
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了