Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies

基于深度学习的仿真分析:方法发展和案例研究

基本信息

  • 批准号:
    10515491
  • 负责人:
  • 金额:
    $ 12.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary To objectively quantify the relative effectiveness of drugs, devices, and treatment procedures on survival outcomes of cardiovascular diseases (CVDs), rigorously designed and executed randomized clinical trials (RCTs) remain as the gold standard. However, for many problems, RCTs either have failed or are not feasible. Luckily, the fast development of electronic medical record (EMR) and insurance claims databases makes it possible to mine a large amount of observational data and efficiently complement RCTs. Among the available observational data analysis techniques that aim to draw RCT-type conclusions, emulation has emerged as especially attractive, given its trial-like architecture, interpretability, and scalability. It has been applied to CVDs for over twenty years and led to many important findings. This study has two aims. The first aim is to develop a deep learning (DL)-based emulation analysis pipeline, methods, and software. Most of the existing emulation analyses are based on “classic” regression techniques. Very recently, our group was the first to develop DL-based emulation analysis with application to CVDs. Compared to regression, DL excels by having superior model fitting and flexibly accommodating unspecified nonlinear effects. Built on our recent success, this project will methodologically significantly advance by developing cutting-edge DL-based emulation analysis with more effective estimation (that has the much- desired robustness property and significantly improved stability and interpretability), comprehensive and valid inference (which is essential for making definitive conclusions on treatment effects but missing in most DL studies), and friendly software (to facilitate broad utilization). This methodological effort can substantially expand the scope of emulation analysis, deep learning, causal inference, observational data analysis, and medical record/insurance claims data analysis. The second aim is to conduct two clinically highly significant case studies. The first case study is on evaluating the effect of ICD (Implantable Cardioverter Defibrillator) on all-cause mortality in the VA (Department of Veterans Affairs) elderly population. The clinical trial targeting at addressing this problem failed because of low enrollment. As part of the VA CAUSAL Initiative, emulation was proposed as a viable solution to “replace” the trial. The second case study is on evaluating the comparative efficacy of Rivaroxaban versus Dabigatran on the mortality of AF (atrial fibrillation) patients in the Medicare population, for which an RCT is unlikely with both drugs FDA-approved and already popularly used. Beyond directly informing clinical practice, research under this aim can also complement and advance the VA CAUSAL Initiative as well as serve as a prototype for future applications of the proposed approach.
项目概要 客观量化药物、设备和治疗程序对生存的相对有效性 心血管疾病(CVD)的结果,严格设计和执行的随机临床试验 (随机对照试验)仍然是黄金标准,但是,对于许多问题,随机对照试验要么失败了,要么不可行。 幸运的是,电子病历(EMR)和保险理赔数据库的快速发展使得 可以挖掘大量观测数据并有效补充现有的随机对照试验。 旨在得出 RCT 类型结论的观察数据分析技术,仿真已经出现 鉴于其类似试验的架构、可解释性和可扩展性,它特别有吸引力,它已应用于 CVD。 二十多年来,取得了许多重要的发现。 本研究有两个目标,第一个目标是开发基于深度学习 (DL) 的仿真分析。 大多数现有的仿真分析都是基于“经典”回归。 最近,我们的团队率先开发了基于 DL 的仿真分析并应用于 与回归相比,深度学习的优势在于具有卓越的模型拟合能力和灵活的适应能力。 基于我们最近的成功,该项目将在方法上取得显着进展。 通过开发基于深度学习的尖端仿真分析和更有效的估计(具有更多 所需的稳健性并显着提高稳定性和可解释性),全面且有效 推断(这对于对治疗效果做出明确的结论至关重要,但在大多数 DL 中都缺失) 研究)和友好的软件(以促进广泛利用),这种方法论的努力可以大大扩展。 仿真分析、深度学习、因果推理、观察数据分析和医学的范围 记录/保险索赔数据分析。第二个目标是进行两个具有临床意义的案例研究。 第一个案例研究是评估 ICD(植入式心脏复律除颤器)对所有原因的影响 该临床试验旨在解决 VA(退伍军人事务部)老年人群的死亡率问题。 由于入学率低,这个问题失败了。作为 VA CAUSAL Initiative 的一部分,仿真被提议为: “替代”试验的可行解决方案第二个案例研究是评估试验的比较功效。 利伐沙班与达比加群对医疗保险人群中 AF(心房颤动)患者死亡率的影响, 对于这两种已获得 FDA 批准且已普遍使用的药物,不可能进行随机对照试验(RCT)。 临床实践,在此目标下的研究也可以补充和推进 VA CAUSAL Initiative 作为所提出方法的未来应用的原型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuangge Ma其他文献

Shuangge Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuangge Ma', 18)}}的其他基金

Cancer Emulation Analysis with Deep Neural Network
使用深度神经网络进行癌症仿真分析
  • 批准号:
    10725293
  • 财政年份:
    2023
  • 资助金额:
    $ 12.56万
  • 项目类别:
Deep Learning-based Emulation Analysis: Methodological Developments and Case Studies
基于深度学习的仿真分析:方法发展和案例研究
  • 批准号:
    10676303
  • 财政年份:
    2022
  • 资助金额:
    $ 12.56万
  • 项目类别:
Integrated Cancer Modeling: A New Dimension
综合癌症建模:新维度
  • 批准号:
    9812144
  • 财政年份:
    2019
  • 资助金额:
    $ 12.56万
  • 项目类别:
Assisted Network-based Analysis of Cancer Gene Expression Studies
癌症基因表达研究的辅助网络分析
  • 批准号:
    9306472
  • 财政年份:
    2017
  • 资助金额:
    $ 12.56万
  • 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
  • 批准号:
    10311368
  • 财政年份:
    2016
  • 资助金额:
    $ 12.56万
  • 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
  • 批准号:
    10668282
  • 财政年份:
    2016
  • 资助金额:
    $ 12.56万
  • 项目类别:
Novel Methods for Identifying Genetic Interactions for Cancer Prognosis
识别癌症预后基因相互作用的新方法
  • 批准号:
    10451680
  • 财政年份:
    2016
  • 资助金额:
    $ 12.56万
  • 项目类别:
Novel methods for identifying genetic interactions in cancer prognosis
识别癌症预后中遗传相互作用的新方法
  • 批准号:
    9079917
  • 财政年份:
    2016
  • 资助金额:
    $ 12.56万
  • 项目类别:
Core B: Biostatistics and Bioinformatics Core
核心 B:生物统计学和生物信息学核心
  • 批准号:
    10203852
  • 财政年份:
    2015
  • 资助金额:
    $ 12.56万
  • 项目类别:
Penalization methods for identifying gene envrionment interactions and applications to melanoma and other cancer types
识别基因环境相互作用的惩罚方法及其在黑色素瘤和其他癌症类型中的应用
  • 批准号:
    8990829
  • 财政年份:
    2014
  • 资助金额:
    $ 12.56万
  • 项目类别:

相似国自然基金

ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
  • 批准号:
    82301213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
何氏养巢方通过SIRT3打破年龄相关性“ROS恶性循环”改善高龄小鼠卵母细胞IVM及质量的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
菊花多元组分通过调控肠道菌群结构及内源性代谢改善年龄相关性黄斑变性作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
一氧化碳释放分子-3(CORM-3)通过抑制晶状体上皮细胞凋亡对年龄相关性白内障治疗作用机制的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
丹参酸A通过铁代谢途径对干性年龄相关性黄斑变性中铁死亡的保护作用及机制研究
  • 批准号:
    82004428
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Multi-Institute Survivorship Study of Patients Living with Advanced Cancer Who Have Had Durable Response to Immune Checkpoint Inhibitors
对免疫检查点抑制剂有持久反应的晚期癌症患者的多机构生存研究
  • 批准号:
    10714336
  • 财政年份:
    2023
  • 资助金额:
    $ 12.56万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 12.56万
  • 项目类别:
Investigating the role of myenteric macrophages in enteric synucleinopathy
研究肌间巨噬细胞在肠突触核蛋白病中的作用
  • 批准号:
    10678094
  • 财政年份:
    2023
  • 资助金额:
    $ 12.56万
  • 项目类别:
Crosstalk Between Nurr1 and Risk Factors of Parkinson's Disease and its Regulation by Nurr1's Ligands
Nurr1与帕金森病危险因素的串扰及其配体的调控
  • 批准号:
    10677221
  • 财政年份:
    2023
  • 资助金额:
    $ 12.56万
  • 项目类别:
Vision Impairment in the National Health and Aging Trends Study: Epidemiology, Social Determinants of Health, and Adverse Late Life Outcomes
国家健康和老龄化趋势研究中的视力障碍:流行病学、健康的社会决定因素和不良的晚年结局
  • 批准号:
    10730418
  • 财政年份:
    2023
  • 资助金额:
    $ 12.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了