Investigation of the G protein-coupled receptor FSHR-1 in multi-tissue neuromuscular signaling in normal and oxidative stress conditions
正常和氧化应激条件下 G 蛋白偶联受体 FSHR-1 在多组织神经肌肉信号传导中的研究
基本信息
- 批准号:10515156
- 负责人:
- 金额:$ 42.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAdenylate CyclaseAgingAnimal ModelAnimalsBehaviorBehavior DisordersBehavioral AssayBindingBiochemicalBiologyBrainCaenorhabditis elegansCalciumCellsCommunicationDataDefectDepressive disorderDiseaseExhibitsFamilyFluorescenceFunctional disorderG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGenesGeneticGenetic EpistasisGlycopeptidesGoalsHomologous GeneHormone ReceptorHumanImageImpairmentInfectionInflammationIntercellular JunctionsIntestinesInvestigationKnowledgeLigandsLinkLipidsMass Spectrum AnalysisMediatingMental DepressionMethodsMissionModelingModificationMolecularMood DisordersMotor NeuronsMusMuscleNematodaNervous System PhysiologyNeurodegenerative DisordersNeurogliaNeurologicNeuromuscular JunctionNeuronsNeuropeptidesNeurosecretory SystemsOrganismOrthologous GeneOxidative StressPathway interactionsPeptidesPhosphotransferasesPhylogenyPhysiologyProcessPublic HealthReagentRegulationResearchRoleSignal PathwaySignal TransductionSiteStressStructureSynapsesSynaptic TransmissionSynaptic VesiclesTestingTissuesUnited States National Institutes of HealthWorkbasebiological adaptation to stressburden of illnesscell typecholinergicexperienceexperimental studyfluorescence imaginggenome editinggonad developmentgonad functionhuman diseaseinnovationloss of functionmutantnervous system disorderneuromuscularneurotransmissionnovelnovel therapeuticsoxidative damageprotein degradationresponsetissue stresstransmission processundergraduate studentvesicular release
项目摘要
PROJECT SUMMARY/ABSTRACT
Neurological and neurodegenerative disorders characterized by imbalances in synaptic transmission are often
linked to oxidative damage. Modification of synaptic signaling in the face of damage is critical for nervous
system function. Inter-tissue signaling is key to stress-induced synaptic modulation, but is not fully understood.
My long-term goal is to determine the molecular mechanisms controlling synaptic transmission in the presence
and absence of oxidative stress. G protein-coupled receptors (GPCRs) are regulators of synaptic transmission
and multi-tissue stress responses, yet the details of relevant GPCR pathways are largely unknown. Recent
work from my lab and others identified roles for the conserved GPCR FSHR-1 in regulating neuromuscular
signaling and oxidative stress responses. FSHR-1 is the sole C. elegans homolog of a family of mammalian
glycopeptide (GP) hormone receptors that control gonad development and function; Fshr deficiency is linked to
depression and brain oxidative stress in mice. In C. elegans, intestinal FSHR-1 promotes organism survival
during infection and oxidative stress; neuronal FSHR-1 can cell non-autonomously regulate intestinal oxidative
stress responses. My lab found that fshr-1 null animals have neuromuscular defects exacerbated by oxidative
stress, but where and how FSHR-1 regulates synaptic signaling under normal or stress conditions and the
mechanisms by which FSHR-1 is activated are unknown. The objective of this proposal is to determine how
FSHR-1 controls signaling at the C. elegans neuromuscular junction (NMJ) via activities in multiple cell types in
the presence and absence of oxidative stress. My preliminary data indicate FSHR-1 can act in neurons and the
intestine to promote muscle excitation. Our data further indicate this effect may be due to FSHR-1’s ability to
act cell non-autonomously to promote cholinergic synaptic vesicle release from motor neurons and suggest a
candidate GP ligand and downstream signaling pathways FSHR-1 may use exert to its effects at the NMJ. My
central hypothesis is that FSHR-1 acts in a subset of non-NMJ cells downstream of the -GP FLR-2 and/or
other peptide ligands to activate pathways involving GS and/or the lipid kinase SPHK-1 to indirectly promote
acetylcholine release and muscle excitation. Aim 1 will use genome editing, fluorescence localization and
calcium imaging, cell-specific protein degradation, and behavior to determine neuronal and non-neuronal sites
of FSHR-1 action in controlling NMJ function in normal and oxidative stress conditions. Aim 2 will use genetics,
imaging, and behavior to determine if downstream FSHR-1 effectors in other contexts mediate FSHR-1’s
effects on NMJ activity. Aim 3 will use complementary genetic epistasis and biochemical approaches to identify
FSHR-1 ligands relevant for its NMJ effects. This research is innovative in its use of a whole animal model to
explore inter-tissue signaling by a conserved GPCR regulating synaptic transmission in diverse conditions. It is
significant in defining novel roles for FSHR-1, which controls diverse processes across phylogeny, and may lay
groundwork for new therapies for synaptic dysfunction and oxidative stress, hallmarks of aging and disease.
项目概要/摘要
以突触传递失衡为特征的神经系统和神经退行性疾病通常是
与氧化损伤有关的突触信号传导对神经至关重要。
系统功能。组织间信号传导是应激诱导的突触调节的关键,但尚未完全了解。
我的长期目标是确定控制突触传递的分子机制
G 蛋白偶联受体 (GPCR) 的缺失是突触传递的调节因子。
和多组织应激反应,但相关 GPCR 途径的细节目前很大程度上未知。
我的实验室和其他人的工作确定了保守的 GPCR FSHR-1 在调节神经肌肉中的作用
FSHR-1 是哺乳动物家族唯一的秀丽隐杆线虫同源物。
控制性腺发育和功能的糖肽 (GP) 激素受体与 Fshr 缺乏有关;
在线虫中,肠道 FSHR-1 促进机体存活。
在感染和氧化应激期间;神经元 FSHR-1 可以非自主地调节肠道氧化
我的实验室发现 fshr-1 缺失的动物存在因氧化而加剧的神经肌肉缺陷。
压力,但 FSHR-1 在正常或压力条件下调节突触信号传导的位置和方式以及
FSHR-1 的激活机制尚不清楚,本提案的目的是确定如何激活。
FSHR-1 通过多种细胞类型的活动控制线虫神经肌肉接头 (NMJ) 的信号传导
我的初步数据表明 FSHR-1 可以在神经元和神经元中发挥作用。
我们的进一步数据表明,这种效应可能是由于 FSHR-1 的能力。
非自主地作用细胞以促进运动神经元释放胆碱能突触小泡,并提出
候选 GP 配体和下游信号通路 FSHR-1 可能会利用其在 NMJ 上发挥作用。
中心假设是 FSHR-1 在 α-GP FLR-2 下游的非 NMJ 细胞亚群中起作用,和/或
其他肽配体激活涉及 GS 和/或脂质激酶 SPHK-1 的途径,从而间接促进
目标 1 将使用基因组编辑、荧光定位和乙酰胆碱释放和肌肉兴奋。
钙成像、细胞特异性蛋白质降解以及确定神经元和非神经元部位的行为
FSHR-1 在正常和氧化应激条件下控制 NMJ 功能的作用目标 2 将利用遗传学,
成像和行为以确定下游 FSHR-1 效应器在其他情况下是否介导 FSHR-1
目标 3 将使用互补遗传上位性和生化方法来识别。
与其 NMJ 效应相关的 FSHR-1 配体这项研究的创新之处在于使用整个动物模型来研究。
通过保守的 GPCR 在不同条件下调节突触传递来探索组织间信号传导。
在定义 FSHR-1 的新作用方面具有重要意义,FSHR-1 控制着整个系统发育的不同过程,并可能奠定
为治疗突触功能障碍和氧化应激(衰老和疾病的标志)的新疗法奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Kowalski其他文献
Jennifer Kowalski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Kowalski', 18)}}的其他基金
Investigation of Anaphase Promoting Complex function in synaptic transmission
突触传递后期促进复合体功能的研究
- 批准号:
8287906 - 财政年份:2012
- 资助金额:
$ 42.23万 - 项目类别:
相似国自然基金
腺苷酸环化酶ADCY3调控鸡肌内脂肪沉积的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺苷酸环化酶ZmRPP13-LK3催化生成的cAMP在玉米耐高温胁迫中的作用机制解析
- 批准号:32171945
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
CUL3和ARIH1介导的腺苷酸环化酶异源敏化在吗啡依赖发生中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
灰霉菌腺苷酸环化酶调节光响应与致病性的机理研究
- 批准号:31972121
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
Ⅲ型腺苷酸环化酶介导肥胖和慢性痛共病的机制研究
- 批准号:
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Disruption of Autonomic Pathways in Left Atrium by Inhibition of G Proteins
抑制 G 蛋白扰乱左心房自主神经通路
- 批准号:
7387674 - 财政年份:2009
- 资助金额:
$ 42.23万 - 项目类别:
Disruption of Autonomic Pathways in the Left Atrium by Inhibition of G-proteins
抑制 G 蛋白扰乱左心房的自主神经通路
- 批准号:
7795813 - 财政年份:2009
- 资助金额:
$ 42.23万 - 项目类别:
Disruption of Autonomic Pathways in Left Atrium by Inhibition of G Proteins
抑制 G 蛋白扰乱左心房自主神经通路
- 批准号:
7844919 - 财政年份:2009
- 资助金额:
$ 42.23万 - 项目类别:
Disruption of Autonomic Pathways in the Left Atrium by Inhibition of G-proteins
抑制 G 蛋白扰乱左心房的自主神经通路
- 批准号:
7795813 - 财政年份:2009
- 资助金额:
$ 42.23万 - 项目类别:
Disruption of Autonomic Pathways in the Left Atrium by Inhibition of G-proteins
抑制 G 蛋白扰乱左心房的自主神经通路
- 批准号:
7656544 - 财政年份:2009
- 资助金额:
$ 42.23万 - 项目类别: