Determining the Role of Bacterial Products on Neuronal Localization and Function in a Symbiotic Organ
确定细菌产物对共生器官神经元定位和功能的作用
基本信息
- 批准号:10647940
- 负责人:
- 金额:$ 18.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdolescentAffectAnimalsApoptosisBacteriaBiological ModelsBiologyBrainCentral Nervous SystemCharacteristicsCommunitiesComplexDataDevelopmentEmbryonic DevelopmentEnteralEnteric Nervous SystemEpitheliumEuprymna scolopesFMRFamideFoundationsGenesGeneticGoalsHawaiianHindgutImageImaging TechniquesIn Situ HybridizationIndividualKnowledgeLabelLightLipopolysaccharidesLocationMediatingMethodsMicrobeModelingNervous SystemNeurobiologyNeuronal PlasticityNeuronsNeuropeptidesNeurotransmittersNitric OxideOpticsOrganOutcomePathway interactionsPeptidoglycanPeripheral Nervous SystemPhenotypePhysiologyPositioning AttributePostembryonicProcessProductionProteinsRNAReactionResourcesRoleSignal TransductionSourceSquidStructureStudy modelsSurfaceSymbiosisSystemTechniquesTestingTimeTissuesV. fischeri-squid systemVibrioVibrio fischeriVisualizationWhole OrganismWorkappendagebeneficial microorganismconnectomegene productgut microbiomehatchingimmunocytochemistryinnovationinsightinterestmicrobialmicrobiomemutantmutualismneurodevelopmentneuron developmentpharmacologicreceptorresponsesymbionttranscriptome sequencing
项目摘要
PROJECT SUMMARY
Bacteria, such as those found in the vertebrate gut microbiome, have been shown to have widespread
effects on both the enteric (ENS) and central nervous systems (CNS) in numerous animals. Reciprocally, the
ENS has been shown to have an impact on the progression of microbiome establishment in the gut. However,
despite the profound influence of bacteria on neuronal development and physiology, the diversity of the
vertebrate gut microbiome and the complexity of the ENS make the mechanisms underlying these phenomena
difficult to study. Despite the importance of the topic and vertebrate models, these systems involve
microbiomes that are both spatially and compositionally complex, often with thousands of bacterial species that
can very between individual hosts. Therefore there is a role for simple, exquisitely manipulable model systems
in which to study the effects of bacterial symbionts on neuronal development and function. To address the
dearth of such models for the mechanisms by which bacteria influence host neurobiology, we propose to use
the symbiosis between the Hawaiian bobtail squid (Euprymna scolopes) and its luminescent bacterial symbiont
Vibrio fischeri as a tractable system in which to study how bacteria drive host neuronal development. The
squid-vibrio system is a well-established model for the effects of bacterial products on host physiology and
development, with outcomes that are often generalizable to other animal systems. This proposal aims to
develop the squid-vibrio system into a new model for the study of the effects of microbes on host neurobiology.
In our first aim we will define the neuronal landscape of the light organ, including neuronal position and identity
and the effect of symbiosis and bacterial products on both. To achieve this aim, we will develop new methods
for dual labeling of RNA and proteins in our system and adapt neuronal tracing techniques for imaging in the
light organ. In our second aim we propose to study the role of neuropeptide signaling on transducing microbial
signals from V. fischeri to tissues on the outside of the symbiotic organ. Specifically, we will determine the
location and dynamics of FMRFamide signaling in the light organ over the first three days of symbiosis and will
examine the effects of FMRFamide signaling on bacterially-mediated post-embryonic development. The data
arising from this proposal will not only lay the foundation for a powerful new model system, but will also
generate new resources and techniques for the community and provide new insights as to the role of the
peripheral nervous system in potentiating microbially-mediated development.
项目概要
细菌,例如在脊椎动物肠道微生物组中发现的细菌,已被证明具有广泛的传播性
对许多动物的肠道(ENS)和中枢神经系统(CNS)都有影响。反过来,
ENS 已被证明对肠道微生物组建立的进展有影响。然而,
尽管细菌对神经元发育和生理学有着深远的影响,但细菌的多样性
脊椎动物肠道微生物组和 ENS 的复杂性构成了这些现象背后的机制
很难学习。尽管主题和脊椎动物模型很重要,但这些系统涉及
微生物组在空间和组成上都很复杂,通常有数千种细菌
各个主机之间可以非常。因此,简单、可精细操作的模型系统发挥着重要作用
研究细菌共生体对神经元发育和功能的影响。为了解决
由于缺乏细菌影响宿主神经生物学机制的模型,我们建议使用
夏威夷短尾乌贼(Euprymna scolopes)与其发光细菌共生体之间的共生关系
费氏弧菌作为一个易于处理的系统,用于研究细菌如何驱动宿主神经元发育。这
鱿鱼-弧菌系统是细菌产物对宿主生理学影响的成熟模型。
的发展,其结果通常可以推广到其他动物系统。该提案旨在
将鱿鱼-弧菌系统开发为研究微生物对宿主神经生物学影响的新模型。
在我们的第一个目标中,我们将定义光器官的神经元景观,包括神经元位置和身份
以及共生和细菌产物对两者的影响。为了实现这一目标,我们将开发新方法
用于在我们的系统中对 RNA 和蛋白质进行双重标记,并采用神经元追踪技术进行成像
光器官。在我们的第二个目标中,我们建议研究神经肽信号转导微生物的作用
费氏弧菌向共生器官外部的组织发出信号。具体来说,我们将确定
共生前三天 FMRFamide 信号在光器官中的位置和动态,并将
检查 FMRFamide 信号对细菌介导的胚胎后发育的影响。数据
该提案的产生不仅将为强大的新模型系统奠定基础,而且还将
为社区创造新的资源和技术,并就社区的作用提供新的见解
周围神经系统增强微生物介导的发育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth A. Heath-Heckman其他文献
Elizabeth A. Heath-Heckman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth A. Heath-Heckman', 18)}}的其他基金
Elucidating Molecular Mechanisms Underlying Cooperation in Animal-Bacterial Symbioses
阐明动物-细菌共生合作的分子机制
- 批准号:
10711795 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Elucidating molecular mechanisms mediating cellular responses to touch and pain
阐明介导细胞对触摸和疼痛反应的分子机制
- 批准号:
9185225 - 财政年份:2015
- 资助金额:
$ 18.78万 - 项目类别:
Elucidating molecular mechanisms mediating cellular responses to touch and pain
阐明介导细胞对触摸和疼痛反应的分子机制
- 批准号:
9051454 - 财政年份:2015
- 资助金额:
$ 18.78万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Development and Validation of the Down Syndrome Regression Rating Scales
唐氏综合症回归评定量表的开发和验证
- 批准号:
10781052 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Testing a Mobile App to Improve Toothbrushing Skills and Habits in Teens with Autism.
测试移动应用程序以提高自闭症青少年的刷牙技能和习惯。
- 批准号:
10738080 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Pain in Hidradenitis Suppurativa: Adolescent Phenotypes and Perspectives
化脓性汗腺炎的疼痛:青少年表型和观点
- 批准号:
10861570 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
PediQUEST ResPOND: Piloting an intervention to treat recurrent pain in children with severe neurological impairment
PediQUEST ResPOND:试点干预措施治疗严重神经损伤儿童的复发性疼痛
- 批准号:
10606777 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别:
Efficacy of Preoperative Oral Iron Supplementation in Adolescents Undergoing Scoliosis Surgery
术前口服铁补充剂对接受脊柱侧凸手术的青少年的疗效
- 批准号:
10785834 - 财政年份:2023
- 资助金额:
$ 18.78万 - 项目类别: