Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
基本信息
- 批准号:10641861
- 负责人:
- 金额:$ 33.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseActive SitesAddressAffinityApoptosisApoptoticArchitectureAutomobile DrivingBindingBinding SitesBiochemicalBiological AssayCatalytic DomainCell physiologyCellsCollectionComplexCrowdingDangerousnessDevelopmentEnvironmentEnzymesEquilibriumEukaryotic CellEventFamilyFluorescence PolarizationFunctional disorderFutureGenomeGoalsGrantHumanIndividualInner mitochondrial membraneKineticsKnowledgeLinkMapsMass Spectrum AnalysisMeasuresMembraneMetabolicMitochondriaMitochondrial ProteinsModelingMolecularMolecular ChaperonesMutationMutation AnalysisNamesNeurodegenerative DisordersOPA1 geneOrganellesOxidative PhosphorylationPeptide FragmentsPeptide HydrolasesPeptide Signal SequencesPeptidesPhospholipid MetabolismPhysiologicalProtein EngineeringProtein IsoformsProteinsProteolysisProteomeQuality ControlReactive Oxygen SpeciesRegulationRegulation of ProteolysisRoleSeriesSet proteinSideSignal TransductionSiteSpecificitySpinocerebellar AtaxiasStructureSurfaceSystemTherapeuticTransmembrane DomainYeastscrosslinkexperimental studyhuman diseasein vivoin vivo monitoringoxidative damagepreferenceprotein degradationproteostasissmall molecule
项目摘要
The mitochondrial inner membrane is the site of essential cellular functions such as oxidative
phosphorylation, phospholipid metabolism, and the regulation of apoptosis. These activities are
performed by a composite mitochondrial proteome that requires constant resculpting to respond
to both the changing metabolic demands of the cell and the emergence of damage driven by
reactive oxygen species. This resculpting is performed by two mitochondrial AAA+ proteases,
which harness the energy of ATP to recognize, unfold and degrade protein substrates both from
within and surrounding the inner membrane. In humans, dysfunction of these proteases has been
linked to the development of severe neurodegenerative disorders such as spinocerebellar ataxia.
AAA+ proteases assemble as hexamers to form an internal proteolytic chamber into which
substrates are forcibly translocated by a ring of ATPases. The study of the mitochondrial AAA+
proteases has been long hampered by their combination of multiple soluble catalytic domains with
insoluble transmembrane domains for anchoring into the inner membrane. We utilize a protein-
engineering approach to assemble previously membrane-constrained hexameric proteases in a
soluble, active form. Our goal is to use these rebuilt proteases to perform a rigorous analysis of
the mechanisms driving energy-dependent proteolysis at the mitochondrial inner membrane. The
first aim of the proposal is to define how substrates are selected for degradation among the myriad
mitochondrial proteins. Degradation signal sequences will be identified from physiological
substrates to ask whether these signals are conserved across diverse mitochondrial proteins to
enable recognition by common proteases. The second aim is to examine the recognition complex
formed between these proteases and specific substrates. A series of complementary biochemical
approaches will map the protease substrate binding sites and identify the complementary contacts
used to promote selection and degradation. Finally, we will examine how the architecture of the
proteolytic sites within the degradation chamber achieves specificity of peptide-bond cleavage
specificity, resulting in site-specific cleavage of a class of substrates, including the regulator of
mitochondrial fission. Together, these experiments will provide a rigorous mechanistic analysis of
the mitochondrial AAA+ proteases and provide foundational knowledge to aid the development
of small molecule modulators as future therapeutics.
线粒体内膜是重要细胞功能的场所,例如氧化
磷酸化、磷脂代谢和细胞凋亡的调节。这些活动是
由复合线粒体蛋白质组执行,需要不断重塑才能做出反应
细胞不断变化的代谢需求以及由细胞引起的损伤的出现
活性氧。这种重塑是由两种线粒体 AAA+ 蛋白酶完成的,
它利用 ATP 的能量来识别、展开和降解来自
在内膜之内和周围。在人类中,这些蛋白酶的功能障碍已被
与严重神经退行性疾病(如脊髓小脑共济失调)的发展有关。
AAA+ 蛋白酶组装成六聚体,形成内部蛋白水解室,其中
底物被 ATP 酶环强制移位。线粒体 AAA+ 的研究
蛋白酶长期以来因其多个可溶性催化结构域的组合而受到阻碍
用于锚定到内膜的不溶性跨膜结构域。我们利用一种蛋白质——
将先前膜限制的六聚体蛋白酶组装在
可溶的活性形式。我们的目标是使用这些重建的蛋白酶来执行严格的分析
驱动线粒体内膜能量依赖性蛋白水解的机制。这
该提案的第一个目标是定义如何在无数的基质中选择用于降解的基质
线粒体蛋白。降解信号序列将从生理学中鉴定
底物来询问这些信号是否在不同的线粒体蛋白中保守
能够被常见的蛋白酶识别。第二个目的是检查识别复合体
这些蛋白酶和特定底物之间形成。一系列补充生化
方法将绘制蛋白酶底物结合位点并识别互补接触点
用于促进选择和降解。最后,我们将研究该架构如何
降解室内的蛋白水解位点实现肽键切割的特异性
特异性,导致一类底物的位点特异性裂解,包括调节剂
线粒体裂变。这些实验将共同提供严格的机制分析
线粒体 AAA+ 蛋白酶并提供帮助开发的基础知识
小分子调节剂作为未来的治疗方法。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quality-control mechanisms targeting translationally stalled and C-terminally extended poly(GR) associated with ALS/FTD.
针对与 ALS/FTD 相关的翻译停滞和 C 末端延伸聚 (GR) 的质量控制机制。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:11.1
- 作者:Li, Shuangxi;Wu, Zhihao;Tantray, Ishaq;Li, Yu;Chen, Songjie;Dong, Jason;Glynn, Steven;Vogel, Hannes;Snyder, Michael;Lu, Bingwei
- 通讯作者:Lu, Bingwei
Multifunctional Mitochondrial AAA Proteases.
多功能线粒体 AAA 蛋白酶。
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Glynn; Steven E
- 通讯作者:Steven E
Sending protein aggregates into a downward spiral.
使蛋白质聚集体陷入螺旋式下降。
- DOI:
- 发表时间:2016-09-06
- 期刊:
- 影响因子:16.8
- 作者:Glynn, Steven E;Chien, Peter
- 通讯作者:Chien, Peter
Dissecting Substrate Specificities of the Mitochondrial AFG3L2 Protease.
剖析线粒体 AFG3L2 蛋白酶的底物特异性。
- DOI:
- 发表时间:2018-07-17
- 期刊:
- 影响因子:2.9
- 作者:Ding, Bojian;Martin, Dwight W;Rampello, Anthony J;Glynn, Steven E
- 通讯作者:Glynn, Steven E
Mitochondrial AAA proteases: A stairway to degradation.
线粒体 AAA 蛋白酶:降解的阶梯。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:4.4
- 作者:Steele, Tyler E;Glynn, Steven E
- 通讯作者:Glynn, Steven E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Glynn其他文献
Steven Glynn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Glynn', 18)}}的其他基金
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
- 批准号:
9300980 - 财政年份:2015
- 资助金额:
$ 33.85万 - 项目类别:
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
- 批准号:
10442568 - 财政年份:2015
- 资助金额:
$ 33.85万 - 项目类别:
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
- 批准号:
10296122 - 财政年份:2015
- 资助金额:
$ 33.85万 - 项目类别:
Using rebuilt AAA+ enzymes to uncover the mechanisms of proteolysis at the mitochondrial inner membrane
使用重建的 AAA 酶揭示线粒体内膜的蛋白水解机制
- 批准号:
8944505 - 财政年份:2015
- 资助金额:
$ 33.85万 - 项目类别:
相似海外基金
Post translational modifications tune cardiac myosin
翻译后修饰调节心肌肌球蛋白
- 批准号:
10291447 - 财政年份:2021
- 资助金额:
$ 33.85万 - 项目类别:
Protein Phosphatase 1 Holoenzyme Formation and Subunit Exchange
蛋白磷酸酶 1 全酶形成和亚基交换
- 批准号:
9985412 - 财政年份:2019
- 资助金额:
$ 33.85万 - 项目类别:
Engagement and Communication Between Proteasonal Subcomplexes
蛋白酶子复合物之间的参与和交流
- 批准号:
9892109 - 财政年份:2017
- 资助金额:
$ 33.85万 - 项目类别: