Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis

靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤

基本信息

项目摘要

ABSTRACT/SUMMARY Necrotizing Fasciitis (NF) or “flesh-eating disease” is a rapidly progressing bacterial infection with severe necrosis of the dermis and underlying soft tissues. Treatment of NF requires systemic antibiotics and aggressive surgical debridement. Even with these treatments, NF has considerable morbidity and mortality. Thus, a better understanding of the pathophysiology of NF and identification of new treatment strategies to attenuate disease progression is required. Recent work has revealed that pro-inflammatory signals can increase or decrease cellular resistance to the cholesterol-dependent cytolysins (CDCs), key microbial toxins that permeabilize cells and destroy tissues. The induction of a CDC “resistant or sensitive state” for phagocytes was found to be dependent on the rapid reprogramming of cellular cholesterol homeostasis. Moreover, disrupting the ability of macrophages to reprogram their lipid metabolic state disrupts the induction of protective states by inflammatory signals. Thus, an inflammatory-lipid metabolic circuit in host cells serves as a determinant of the pathogenic potential of CDCs, a major virulence factor in necrotizing skin infections. In this application, we combine advanced methodologies (e.g., mass spectrometry, single-cell sequencing, and imaging) with genetic and pharmacologic models of lipid metabolism to understand if tissue lipid metabolism is a host factor that determines the pathogenic potential of CDCs and group A strep (GAS) infections. Specific Aim 1 will determine the molecular mechanism underlying how the CH25H-LXR metabolic axis mediates the protection of cells from CDC toxicity. Specifically, we will pursue our discovery that activation of the LXR signaling pathway profoundly protects phagocytes from CDC-mediated loss of membrane integrity. Combining lipidomics, transcriptomics, imaging, and functional assays with gain- and loss-of function models, we will molecularly dissect the lipid metabolic pathways necessary for LXR-mediated protection from CDC-mediated cytotoxicity. Specific aim 2 will focus on advancing our understanding of the cell types in the skin necessary and sufficient for LXR-induced protection from CDC tissue damage. We will apply advanced analytical techniques combined with mouse models of altered lipid metabolism to determine the cell types and lipid metabolic pathways involved in inducing a resistant state to CDCs in the skin. Specific Aim 3 determines which host lipid metabolism pathways are critical for resistance to localized or NF-like experimental GAS skin infection models. Our data shows that dysregulation of cholesterol metabolism potentiates CDC-mediated tissue damage but activating the LXR pathway induces a protective state. In this aim, we extend these exciting observations and mechanistically test if modulating lipid homeostasis in host tissues alters the pathogenesis of experimental NF models and may serve as an adjunct treatment. We expect that these studies will define at the molecular level how lipid metabolism in infected tissues influences tissue damage caused the CDC pore-forming toxins and could provide proof-of-concept evidence that targeting lipid homeostasis is a productive approach to attenuating the pathogenesis of necrotizing infections.
摘要/总结 坏死性筋膜炎 (NF) 或“食肉性疾病”是一种快速进展的细菌感染,可导致严重的后果 真皮和底层软组织坏死的治疗需要全身抗生素和积极的治疗。 即使采用这些治疗方法,神经纤维瘤病的发病率和死亡率也相当高。 了解 NF 的病理生理学并确定减轻疾病的新治疗策略 最近的研究表明促炎症信号可以增加或减少。 细胞对胆固醇依赖性溶细胞素 (CDC) 的抵抗力,这是使细胞透化的关键微生物毒素 并发现吞噬细胞诱导 CDC“抵抗或敏感状态”。 依赖于细胞胆固醇稳态的快速重编程。 巨噬细胞重新编程其脂质代谢状态会破坏炎症对保护状态的诱导 因此,宿主细胞中的炎症-脂质代谢回路是致病的决定因素。 CDC 的潜力是坏死性皮肤感染的主要毒力因子,在此应用中,我们将其结合起来。 先进的方法(例如质谱、单细胞测序和成像)与遗传和 脂质代谢的药理学模型,以了解组织脂质代谢是否是决定的宿主因素 CDC 和 A 组链球菌 (GAS) 感染的致病潜力将决定具体目标 1。 CH25H-LXR代谢轴介导细胞免受CDC保护的分子机制 具体来说,我们将深入研究 LXR 信号通路激活的发现。 结合脂质组学、转录组学,保护吞噬细胞免受 CDC 介导的膜完整性损失。 通过成像以及功能获得和丧失模型的功能测定,我们将从分子角度剖析脂质 LXR 介导的保护免受 CDC 介导的细胞毒性所必需的代谢途径。 具体目标 2 将。 专注于增进我们对 LXR 诱导所需和足够的皮肤细胞类型的理解 我们将结合小鼠模型应用先进的分析技术。 改变脂质代谢以确定细胞类型和参与诱导脂质代谢途径 皮肤对 CDC 的抵抗状态决定了哪些宿主脂质代谢途径至关重要。 对于局部或 NF 样实验性 GAS 皮肤感染模型的抵抗力,我们的数据表明失调。 胆固醇代谢的增加会增强 CDC 介导的组织损伤,但激活 LXR 途径会诱导 为了这个目的,我们扩展了这些令人兴奋的观察结果并机械测试是否调节脂质。 宿主组织的稳态改变了实验性神经纤维瘤模型的发病机制,并可能作为一种辅助手段 我们期望这些研究将在分子水平上确定感染组织中的脂质代谢情况。 影响引起 CDC 成孔毒素的组织损伤,并可以提供概念验证证据 针对脂质稳态是减轻坏死性感染发病机制的有效方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN J BENSINGER其他文献

STEVEN J BENSINGER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN J BENSINGER', 18)}}的其他基金

CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
  • 批准号:
    10377523
  • 财政年份:
    2021
  • 资助金额:
    $ 71.46万
  • 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
  • 批准号:
    10591518
  • 财政年份:
    2021
  • 资助金额:
    $ 71.46万
  • 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
  • 批准号:
    10186282
  • 财政年份:
    2021
  • 资助金额:
    $ 71.46万
  • 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
  • 批准号:
    10375587
  • 财政年份:
    2021
  • 资助金额:
    $ 71.46万
  • 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
  • 批准号:
    10549326
  • 财政年份:
    2021
  • 资助金额:
    $ 71.46万
  • 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
  • 批准号:
    10184535
  • 财政年份:
    2021
  • 资助金额:
    $ 71.46万
  • 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
  • 批准号:
    10397414
  • 财政年份:
    2019
  • 资助金额:
    $ 71.46万
  • 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
  • 批准号:
    10613971
  • 财政年份:
    2019
  • 资助金额:
    $ 71.46万
  • 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
  • 批准号:
    10161852
  • 财政年份:
    2019
  • 资助金额:
    $ 71.46万
  • 项目类别:
Understanding the influence of SREBP signaling on CD4 T helper cell biology
了解 SREBP 信号传导对 CD4 T 辅助细胞生物学的影响
  • 批准号:
    9178626
  • 财政年份:
    2015
  • 资助金额:
    $ 71.46万
  • 项目类别:

相似国自然基金

放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
  • 批准号:
    32360009
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
  • 批准号:
    42307159
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
附着培养微藻对市政污水中抗生素与常量污染物长效协同净化的调控机制
  • 批准号:
    52370043
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
g-C3N4基原子级超薄S-型异质结构建及抗生素降解机制研究
  • 批准号:
    22308203
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于抗生素去除的造纸浆渣基功能化有机高分子絮凝剂的结构调控及构效关系研究
  • 批准号:
    52370015
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Interactions Between the Microbiota and Helicobacter pylori in Gastric Carcinogenesis
微生物群与幽门螺杆菌在胃癌发生中的相互作用
  • 批准号:
    10709135
  • 财政年份:
    2023
  • 资助金额:
    $ 71.46万
  • 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
  • 批准号:
    10677257
  • 财政年份:
    2023
  • 资助金额:
    $ 71.46万
  • 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
  • 批准号:
    10677257
  • 财政年份:
    2023
  • 资助金额:
    $ 71.46万
  • 项目类别:
Role of M3 peptidases in Staphylococcus aureus pathogenesis
M3肽酶在金黄色葡萄球菌发病机制中的作用
  • 批准号:
    10575030
  • 财政年份:
    2023
  • 资助金额:
    $ 71.46万
  • 项目类别:
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
  • 批准号:
    10642243
  • 财政年份:
    2023
  • 资助金额:
    $ 71.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了