The mechanotranscriptome of the optic nerve head following acute experimental ocular hypertension in living human eyes
活体人眼急性实验性高眼压后视神经乳头的机械转录组
基本信息
- 批准号:10639434
- 负责人:
- 金额:$ 57.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimal ModelAnimalsAstrocytesBiomechanicsBlindnessBlood VesselsBrain DeathCellsConnective TissueConsentDataDevelopmentElectrophysiology (science)EvaluationExhibitsEyeFibroblastsFunctional disorderGlaucomaHistopathologyHumanImmunohistochemistryIndividualInflammatoryInjuryIschemiaLinkMeasurementMeasuresMechanicsMethodsMicrogliaModelingMolecularNeurogliaOcular HypertensionOptic DiskOptic NerveOrgan DonorOrgan ProcurementsPapillaryPathologicPathway interactionsPerfusionPhenotypePhysiologic Intraocular PressurePredispositionProtein AnalysisProteinsResearchResourcesRetinaRetinal Ganglion CellsRiskRisk FactorsScienceScleraStressStretchingStructureStudy modelsTestingTherapeutic InterventionTimeTissuesTranscriptTranslationsVariantWeight-Bearing stateaxon injurycell typeclinical careclinical imagingdensitydesignexperimental studyhuman diseaseimaging approachin vivoinnovationinsightmechanotransductionneuralnew therapeutic targetnovel therapeuticsoptic nerve disorderpressurepromote resilienceresponseretinal axontargeted treatmenttherapeutic developmenttissue culturetranscriptometranscriptomics
项目摘要
Glaucoma is one of the leading causes of irreversible blindness for which the lowering of intraocular pressure
(IOP) is the only proven treatment. Since elevated IOP is a critical risk factor for glaucoma, several animal models
have been developed to study the cellular, vascular, and electrophysiologic responses of the retina to acute IOP
elevation. While these models have elucidated the relationship between ocular perfusion and retinal function as
well as many of the cellular pathways activated in response to acute IOP related exposure, there are significant
differences in optic nerve structure and composition across species, limiting the translation of these findings to
the human disease. This project will study the impact of IOP elevation in the living human eye for the first time
by utilizing the unique resources developed by the Living Eye Project. This project provides experimental access
to the human eye in vivo in research-consented brain-dead organ donors prior to organ procurement. Following
enucleation, the Living Eye Project provides access to the same eyes for ex vivo analysis of cellular and tissue
responses. Our principal hypothesis is that acute IOP elevation results in deformation of the optic nerve head
(ONH), and this deformation drives mechanosensitive mechanisms within the lamina cribrosa (LC) and
peripapillary sclera that initiate pathologic remodeling of the LC, which injures the axons of retinal ganglion cells
traversing this mechanically dynamic region. These mechanosensitive pathways will be characterized using
spatial transcriptomics for the first time in the human eye alongside immunohistochemistry and protein analysis.
We predict that increased IOP initiates a profibrotic, inflammatory phenotype and transcriptomic alterations that
regionally colocalize with the connective tissue density within the LC and are associated with the magnitude of
IOP-induced deformation of the ONH measured in vivo. Our unprecedented opportunity to measure structural
and biomechanical parameters of the human ONH in vivo and perform ex vivo evaluation of the cellular
mechanobiology of the same tissues will provide the first direct experimental link between ONH mechanical
strain and the molecular and cellular responses of ONH tissues that drive remodeling, which is critical to the
development and progression of glaucomatous optic neuropathy. Defining this “mechanotranscriptome” in the
human ONH will critically assess the translational value of animal models for studying mechanotransduction as
well as define the human cellular and molecular mechanisms of ONH remodeling needed to guide the
development of novel therapeutics designed to enhance the resilience of the ONH to pressure-related stress.
青光眼是导致不可逆性失明的主要原因之一,眼压降低会导致青光眼
(IOP) 是唯一经过验证的治疗方法,因为眼压升高是青光眼的关键危险因素,因此有几种动物模型。
已被开发用于研究视网膜对急性眼压的细胞、血管和电生理反应
虽然这些模型已经阐明了眼灌注和视网膜功能之间的关系。
以及响应急性 IOP 相关暴露而激活的许多细胞通路,有显着的影响
不同物种之间视神经结构和组成的差异,限制了这些发现的转化
该项目将首次研究眼压升高对活人眼睛的影响。
通过利用 Living Eye 项目开发的独特资源,该项目提供了实验访问权限。
在器官获取之前,对经研究同意的脑死亡器官捐献者体内进行人眼观察。
摘除,活眼项目提供了使用同一只眼睛进行细胞和组织的离体分析
我们的主要假设是急性眼压升高会导致视神经乳头变形。
(ONH),这种变形驱动筛板 (LC) 内的机械敏感机制
视乳头周围巩膜启动 LC 病理性重塑,从而损伤视网膜神经节细胞的轴突
穿过这个机械动态区域将使用这些机械敏感路径来表征。
首次在人眼中进行空间转录组学以及免疫组织化学和蛋白质分析。
我们预测,眼压升高会引发促纤维化、炎症表型和转录组改变,从而导致
与 LC 内的结缔组织密度区域共定位,并与
体内测量的 IOP 引起的 ONH 变形是我们前所未有的测量结构的机会。
体内人类 ONH 的生物力学参数,并对细胞进行离体评估
相同组织的机械生物学将提供 ONH 机械之间的第一个直接实验联系
应变以及驱动重塑的 ONH 组织的分子和细胞反应,这对于
青光眼视神经病的发生和进展。
人类 ONH 将严格评估动物模型用于研究机械转导的转化价值
以及定义 ONH 重塑的人类细胞和分子机制,以指导
开发旨在增强 ONH 对压力相关压力的恢复能力的治疗小说。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Retinal electrophysiologic response to IOP elevation in living human eyes.
活体人眼对眼压升高的视网膜电生理反应。
- DOI:
- 发表时间:2023-04
- 期刊:
- 影响因子:3.4
- 作者:Girkin, Christopher A;Garner, Mary Anne;Fazio, Massimo A;Clark, Mark E;Karuppanan, Udayakumar;Hubbard, Meredith G;Bianco, Gianfranco;Hubbard, Seth T;Fortune, Brad;Gross, Alecia K
- 通讯作者:Gross, Alecia K
Displacement of the Lamina Cribrosa With Acute Intraocular Pressure Increase in Brain-Dead Organ Donors.
脑死亡器官捐献者眼压急性升高导致筛板移位。
- DOI:
- 发表时间:2023-12-01
- 期刊:
- 影响因子:4.4
- 作者:Girkin, Christopher A;Garner, Mary A;Gardiner, Stuart K;Clark, Mark E;Hubbard, Meredith;Karuppanan, Udayakumar;Bianco, Gianfranco;Bruno, Luigi;Fazio, Massimo A
- 通讯作者:Fazio, Massimo A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Massimo Antonio Fazio其他文献
Massimo Antonio Fazio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Massimo Antonio Fazio', 18)}}的其他基金
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
10238922 - 财政年份:2018
- 资助金额:
$ 57.23万 - 项目类别:
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
9765319 - 财政年份:2018
- 资助金额:
$ 57.23万 - 项目类别:
African Descent and Glaucoma Evaluation (ADAGES) IV: Alterations of the lamina cribrosa in progression
非洲人后裔和青光眼评估 (ADAGES) IV:进展中筛板的改变
- 批准号:
9246738 - 财政年份:2017
- 资助金额:
$ 57.23万 - 项目类别:
African Descent and Glaucoma Evaluation (ADAGES) IV: Alterations of the lamina cribrosa in progression
非洲人后裔和青光眼评估 (ADAGES) IV:进展中筛板的改变
- 批准号:
9903321 - 财政年份:2017
- 资助金额:
$ 57.23万 - 项目类别:
相似国自然基金
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
建立脑内急性基因编辑的孤独症非人灵长类动物模型
- 批准号:
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:专项基金项目
树鼩异种移植模型的建立及免疫排斥机制的深入研究
- 批准号:81771721
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
染色体大片段缺失的急性髓性白血病动物模型的构建及分析
- 批准号:81770157
- 批准年份:2017
- 资助金额:84.0 万元
- 项目类别:面上项目
自发性高甘油三酯急性胰腺炎大鼠模型的建立及应用
- 批准号:81570584
- 批准年份:2015
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Understanding and Controlling the Contribution of Fibrinolysis to Bleeding Using a Long-Acting Antifibrinolytic RNA Therapy
使用长效抗纤溶 RNA 疗法了解和控制纤溶对出血的影响
- 批准号:
10737327 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别:
Systems Genetics of Cocaine Preference in Drosophila
果蝇可卡因偏好的系统遗传学
- 批准号:
10675195 - 财政年份:2023
- 资助金额:
$ 57.23万 - 项目类别: