Utility of adaptive design optimization for developing rapid and reliable behavioral paradigms for substance use disorders
利用自适应设计优化来开发快速可靠的药物滥用行为范例
基本信息
- 批准号:10637895
- 负责人:
- 金额:$ 55.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlcoholsAssessment toolAttentionBayesian ModelingBehaviorBehavioral ModelBehavioral ParadigmBiological AssayBrainBulgariaClassificationCocaine use disorderCognitionComputational ScienceComputer softwareComputing MethodologiesCountryDataData CollectionDecision MakingDiagnosticDimensionsDiseaseEffectivenessEmotionalEtiologyFeedbackGoalsHeterogeneityHourIndividualInfluentialsInfrastructureInterventionKnowledgeMeasuresMethodsModelingMonitorNeurobiologyNeurocognitiveNeurosciencesOpioidOutcomeParticipantPathway interactionsPatient Self-ReportPatientsPhenotypePopulation HeterogeneityProceduresPrognosisResearchSamplingSmoking Cessation InterventionSouth KoreaStimulantSubstance Use DisorderTestingTimeTobaccoValidationVeteransaddictionalcohol use disorderbiomarker discoverybiomarker performanceclinical practicecognitive functioncognitive processcomputerized toolscostdesigndiscountingdisease classificationendophenotypeexecutive functionheuristicsimprovedincentive salienceindexingmachine learning algorithmmobile applicationneurobehavioralneuroimagingneuropsychiatrynovelopen sourceopioid use disorderpatient subsetspreventprognosticrapid testresponsesoftware developmenttobacco smokerstraittreatment responseundergraduate studentweb platform
项目摘要
ABSTRACT
A key problem in substance use disorders (SUD) is their etiological and functional heterogeneity, which is not
well captured by the current psychiatric nosology. An influential neuroscience-based heuristic framework,
Addictions Neuroclinical Assessment (ANA), proposes that to address this heterogeneity, the assessment of
addictions should be multi-dimensional and focus on three key domains: executive function (EF), incentive
salience (IS), and negative emotionality (NE), assessed with comprehensive batteries of self-report and
neurobehavioral tasks. While computational tools have increased the knowledge extracted from these tasks,
there are surprisingly few high-quality assays for monitoring and characterizing these domains. The burden of
administration of current assessment batteries may take up to 10 hours and most assessment instruments lack
precision in identifying underlying etiological mechanisms. Critically, most neurobehavioral and neuroimaging
tasks have low test-retest reliability, which limits their utility for biomarker discovery. To address these limitations,
we propose to apply Bayesian adaptive design optimization (ADO; Myung & Pitt, 2009) to established tasks that
index the three ANA domains, with the goal of developing rapid, robust, and reliable neurobehavioral probes of
these domains. ADO is a general-purpose computational machine-learning algorithm that optimizes data
collection and extracts the maximal information from participant responses in the fewest possible trials. Our
preliminary data show that ADO led to 0.95 or higher test-retest reliability of the delay discounting rate in under
1-2 minutes of testing, captured approximately 10% more variance in test-retest reliability, and was 3-5 times
more precise and 3-8 times more efficient than conventional assessment methods (Ahn et al., 2020). The current
study proposes to develop and evaluate a battery of ADO-based tasks, software, and mobile apps using state-
of-the-science computational approaches that will significantly reduce the time for neurocognitive task
administration, while increasing task reliability, precision, and efficiency. To capture the heterogeneity of
addiction, this battery will be tested with neurotypical individuals and several diverse populations with different
types of SUD (opioid, stimulant, alcohol, and tobacco) in three countries (USA, South Korea, Bulgaria) where
we have developed infrastructure for this type of research. This value-added perspective would be useful for out-
of-sample validation of our models and allow us to address not only the generalizability of the ANA domains to
different types of SUD, but also the cross-cultural generalizability of the domains, which has not been examined.
The specific aims of the study are to: (1) Develop a battery of reliable and efficient ADO-based neurobehavioral
tasks of the ANA domains and assess its test-retest reliability in neurotypical individuals; (2) Assess the predictive
utility of the newly developed ADO tasks for SUD outcomes by testing patients with different types of SUD; and
(3) Design web-based platforms and mobile apps for measuring cognition with the newly developed ADO tasks,
and open-source software platforms with the ADO and other computational methods we develop.
抽象的
物质使用障碍 (SUD) 的一个关键问题是其病因学和功能异质性,但这一点并不存在。
当前的精神病学疾病分类学很好地捕捉到了这一点。一个有影响力的基于神经科学的启发式框架,
成瘾神经临床评估(ANA)建议,为了解决这种异质性,评估
成瘾应该是多维度的,并关注三个关键领域:执行功能(EF)、激励
显着性(IS)和负面情绪(NE),通过自我报告和综合评估
神经行为任务。虽然计算工具增加了从这些任务中提取的知识,
令人惊讶的是,用于监测和表征这些领域的高质量分析方法很少。的负担
当前评估电池的管理可能需要长达 10 小时,并且大多数评估工具缺乏
准确识别潜在病因机制。至关重要的是,大多数神经行为和神经影像学
任务的重测可靠性较低,这限制了它们在生物标志物发现方面的效用。为了解决这些限制,
我们建议将贝叶斯自适应设计优化(ADO;Myung & Pitt,2009)应用于既定任务:
索引三个 ANA 域,目标是开发快速、稳健且可靠的神经行为探针
这些域。 ADO 是一种通用计算机器学习算法,可优化数据
在尽可能少的试验中收集并从参与者的反应中提取最大的信息。我们的
初步数据显示,ADO 导致延迟贴现率的重测可靠性达到 0.95 或更高
1-2 分钟的测试,捕获了大约 10% 的重测可靠性差异,是 3-5 倍
比传统评估方法更精确,效率提高 3-8 倍(Ahn 等人,2020)。目前的
研究建议使用状态来开发和评估一系列基于 ADO 的任务、软件和移动应用程序
科学计算方法将显着减少神经认知任务的时间
管理,同时提高任务的可靠性、精确度和效率。捕捉异质性
成瘾性,这种电池将在神经典型个体和具有不同特征的几个不同人群中进行测试
三个国家(美国、韩国、保加利亚)的 SUD(阿片类药物、兴奋剂、酒精和烟草)类型
我们已经为此类研究开发了基础设施。这种增值的观点对于输出是有用的
对我们的模型进行样本外验证,使我们不仅能够解决 ANA 域的通用性问题
不同类型的 SUD,还有领域的跨文化普遍性,这一点尚未得到检验。
该研究的具体目标是:(1)开发一系列可靠且高效的基于 ADO 的神经行为模型
ANA 领域的任务并评估其在神经典型个体中的重测可靠性; (2) 评估预测
通过测试不同类型 SUD 的患者,利用新开发的 ADO 任务来评估 SUD 的结果;和
(3) 设计基于网络的平台和移动应用程序,用于使用新开发的 ADO 任务测量认知,
以及使用 ADO 和我们开发的其他计算方法的开源软件平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Woo-Young Ahn其他文献
Woo-Young Ahn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
醇类燃料分子结构对双燃料发动机碳烟生成和演变规律影响的基础研究
- 批准号:52306164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
茶树根系“响应铝信号-黄酮醇类代谢改变-促进生长”模式的机理研究
- 批准号:32372758
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
单原子催化醇类化合物的选择性氢氘交换反应
- 批准号:22302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铂基亚纳米/单原子催化剂的创制及其在叶醇类香料合成中的应用
- 批准号:22378079
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
电催化/非电催化协同策略用于生物质醇类分子氧化构建C–C/C–N键的研究
- 批准号:22308015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
2 College Truths & 1 Lie: Social Media Embedded Gamified Normative Re-education
2 大学真相
- 批准号:
10593626 - 财政年份:2023
- 资助金额:
$ 55.28万 - 项目类别:
Emergency Department-Initiated Medications for Alcohol Use Disorder
急诊科启动的酒精使用障碍药物
- 批准号:
10567250 - 财政年份:2023
- 资助金额:
$ 55.28万 - 项目类别:
Technology-based intervention for alcohol-related sexual risk behaviors in young women with sexual victimization histories
基于技术的干预措施,针对有性受害史的年轻女性与酒精相关的性危险行为
- 批准号:
10757797 - 财政年份:2023
- 资助金额:
$ 55.28万 - 项目类别:
A Mixed-Method Study on Transgender and Gender Diverse Adults’ Alcohol Use
关于跨性别和性别多样化成年人饮酒的混合方法研究
- 批准号:
10666199 - 财政年份:2023
- 资助金额:
$ 55.28万 - 项目类别: