Enteroendocrine cells sense gut bacteria and activate a gut-brain pathway
肠内分泌细胞感知肠道细菌并激活肠脑通路
基本信息
- 批准号:10640981
- 负责人:
- 金额:$ 15.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-20 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAffectAfferent NeuronsAgonistAnxietyAwardBacteriologyBehaviorBiological ModelsBrainBrain DiseasesCalciumCatabolismCell TransplantationCell physiologyCell secretionCellsCentral Nervous SystemChemicalsCommunicationDevelopment PlansDietDiseaseEdwardsiella tardaEmotionsEnteralEnterobacteriaceaeEnteroendocrine CellEpithelial CellsFishesFunctional Gastrointestinal DisordersGastroenterologyGastrointestinal DiseasesGastrointestinal tract structureGeneticGnotobioticGoalsGram-Negative BacteriaHealthHomeostasisHormonalHumanImageImmunologicsInfectionIntestinal DiseasesIntestinesIrritable Bowel SyndromeIrritantsK-Series Research Career ProgramsKnowledgeLinkMeasuresMediatingMentorshipMicrobeMicrobiologyMissionMolecularMusNerve FibersNervous SystemNeuronsNeurotransmittersNociceptionNutrientNutritionalOutcomePainPathogenesisPathologicPathway interactionsPenetrationPeptide Signal SequencesPerceptionPharmacologic SubstancePhysiologyPostdoctoral FellowProductionPublic HealthResearchResearch PersonnelResearch TrainingScientistSensorySensory GangliaSignal TransductionSignaling MoleculeSpinalStressSystemTRPA channelTestingTrainingTryptophanUnited States National Institutes of HealthUniversitiesVagus nerve structureVertebral columnVisceralZebrafishbacterial geneticsbrain pathwayburden of illnesscareercareer developmentdetection of nutrientgenetic manipulationgut bacteriagut microbesgut microbiotagut-brain axishost-microbe interactionsin vivointestinal epitheliummicrobialmicroorganismnervous system disorderneuronal circuitrynovelnovel therapeuticsoptogeneticspathogenperipheral painpharmacologicpituitary adenylate cyclase activating polypeptidepolypeptidepreventpsychiatric symptomreceptorresponsesingle-cell RNA sequencingskillstemporal measurementtherapeutic developmenttransmission process
项目摘要
PROJECT SUMMARY
Microorganisms residing in the intestinal lumen have a significant impact on brain function and behavior.
Perturbation of microbe-gut-brain communication is believed to be involved in the pathogenesis of well-known
gut-brain disorders such as irritable bowel syndrome (IBS) and related functional GI disorders. However, there
is lack of understanding of the precise microbial mechanisms and the cellular pathways that allow gut microbes
to communicate with the brain. To address this critical knowledge gap, the applicant has pioneered the zebrafish
system for the study of microbe-gut-brain communication. Using in vivo real-time measurements of cell activity
in zebrafish, the applicant’s recent research revealed that specific gut bacteria directly activate specialized
sensory cells in the intestine epithelium, enteroendocrine cells (EECs), through the receptor transient receptor
potential ankyrin A1 (Trpa1). Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly
activates enteric neurons and stimulates vagal sensory ganglia. Preliminary studies identified a distinct subset
of bacterial derived tryptophan catabolites as novel agonists that potently activate Trpa1. The objective of the
proposed research is to determine the precise molecular mechanism by which enteric bacteria activate the EEC-
vagal sensory pathway to modulate brain activity. The central hypothesis is that bacterial secreted tryptophan
catabolites stimulate Trpa1 in EECs to activate vagal sensory neurons through a novel EEC secreted signal
peptide, pituitary adenylate cyclase activating polypeptide (Pacap). To test this, the applicant will first use
molecular microbiology and zebrafish gnotobiotic approaches to define the microbial pathway and mechanism
that activates EEC Trpa1 signaling. Second, the applicant will use in vivo vagal calcium imaging, optochemical
and genetic manipulation to identify the specific subtype of EECs that transmit enteric bacterial information to
the vagus. Finally, the applicant will use pharmaceutical, genetic and cell transplantation approaches to define
the EEC signaling peptide that transmits bacterial information from the gut lumen to the vagus. The proposed
research is expected to make a significant new contribution to our understanding of the molecular mechanisms
and cellular pathways by which enteric bacteria communicate with the brain. The interdisciplinary experimental
approach together with the comprehensive career development plan will extend the applicant’s training from
gastroenterology into vagal and brain physiology as well as molecular microbiology. A diverse team of
established investigators at Duke University and UNC Chapel Hill, with expertise ranging from host-microbe
interaction to gut-brain physiology to bacteriology, will oversee the applicant’s career development during the
award period by contributing intellectually to her research training, providing mentorship, and offering career
advice. This 5-year career development award will provide the applicant with the necessary professional and
scientific skills to be an independent and successful microbiota-gut-brain scientist.
项目概要
肠腔中的微生物对大脑功能和行为有重大影响。
微生物-肠-脑通讯的扰动被认为与众所周知的发病机制有关
然而,肠脑疾病,如肠易激综合症(IBS)和相关的功能性胃肠道疾病。
缺乏对肠道微生物的精确微生物机制和细胞途径的了解
为了解决这一关键的知识差距,申请人开创了斑马鱼的研究。
使用体内实时测量细胞活动来研究微生物-肠-脑通讯的系统。
在斑马鱼中,申请人最近的研究表明,特定的肠道细菌直接激活专门的
肠上皮的感觉细胞,肠内分泌细胞(EEC),通过受体瞬时受体
Trpa1+EEC 的潜在锚蛋白 A1 (Trpa1) 的微生物、药理学或光遗传学激活。
激活肠神经元并刺激迷走神经感觉神经节。初步研究确定了一个独特的子集。
细菌衍生的色氨酸分解代谢物作为有效激活Trpa1的新型激动剂。
拟议的研究旨在确定肠道细菌激活 EEC 的精确分子机制
迷走神经感觉通路调节大脑活动的中心假设是细菌分泌色氨酸。
分解代谢物刺激 EEC 中的 Trpa1,通过新的 EEC 分泌信号激活迷走神经感觉神经元
肽,垂体腺苷酸环化酶激活多肽(Pacap) 为了测试这一点,申请人将首先使用。
分子微生物学和斑马鱼生殖方法来定义微生物途径和机制
其次,申请人将使用体内迷走神经钙成像、光化学。
和基因操作来识别将肠道细菌信息传递给的 EEC 的特定亚型
最后,申请人将使用药物、遗传和细胞移植方法来定义迷走神经。
EEC 信号肽,将细菌信息从肠腔传递到迷走神经。
研究预计将为我们理解分子机制做出重大的新贡献
以及肠道细菌与大脑通讯的细胞途径。
方法与全面的职业发展计划相结合,将使申请人的培训范围从
胃肠病学、迷走神经和大脑生理学以及分子微生物学。
在杜克大学和北卡罗来纳大学教堂山分校建立了研究人员,其专业知识涵盖宿主微生物
肠脑生理学和细菌学的相互作用,将监督申请人在此期间的职业发展
奖励期通过为她的研究培训做出智力贡献、提供指导和提供职业生涯
这个为期 5 年的职业发展奖将为申请人提供必要的专业和建议。
成为一名独立且成功的微生物-肠-脑科学家的科学技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lihua Ye其他文献
Lihua Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lihua Ye', 18)}}的其他基金
Enteroendocrine cells sense gut bacteria and activate a gut-brain pathway
肠内分泌细胞感知肠道细菌并激活肠脑通路
- 批准号:
10214842 - 财政年份:2021
- 资助金额:
$ 15.05万 - 项目类别:
Enteroendocrine cells sense gut bacteria and activate a gut-brain pathway
肠内分泌细胞感知肠道细菌并激活肠脑通路
- 批准号:
10545352 - 财政年份:2021
- 资助金额:
$ 15.05万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mitochondrial proton leak and neonatal brain injury
线粒体质子泄漏与新生儿脑损伤
- 批准号:
10724518 - 财政年份:2023
- 资助金额:
$ 15.05万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 15.05万 - 项目类别:
The role of dendritic cells in heart valve extracellular matrix remodeling, homeostasis, and disease
树突状细胞在心脏瓣膜细胞外基质重塑、稳态和疾病中的作用
- 批准号:
10672638 - 财政年份:2023
- 资助金额:
$ 15.05万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 15.05万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 15.05万 - 项目类别: