Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
基本信息
- 批准号:10454235
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAccountingAddressAdmixtureAdverse drug eventAdverse eventAffectAfricanAfrican American populationAlgorithmsAnticoagulantsAnticoagulationCYP2C9 geneCardiovascular DiseasesCharacteristicsClinic VisitsClinicalClinical ResearchCollectionDNADataData SetDevelopmentDiet RecordsDoseDrug PrescriptionsDrug ReceptorsEmergency SituationEnrollmentEnzymesEpigenetic ProcessEscherichia coliEuropeanFailureGenesGeneticGenotypeGuidelinesHospitalizationHourIndividualInternationalInvestigationLatinoLatino PopulationLinear RegressionsMachine LearningMeasuresMedical ResearchMissionModelingNative AmericansOralOutcomePatient Self-ReportPatientsPatternPharmaceutical PreparationsPharmacogeneticsPharmacogenomicsPopulationPopulation HeterogeneityPublic HealthRaceRandomized Controlled TrialsResearchResearch Project GrantsRoleSafetySamplingSourceTechniquesTestingTherapeuticTrainingUnited StatesUnited States National Institutes of HealthVariantVitamin KWarfarinWorkadverse drug reactionbacterial communitybacterial genome sequencingbasecohortdietarydisparity reductiongenome-widegut bacteriagut microbiomeimprovedmachine learning modelmedically underservedmicrobial communitymicrobiomenovelpersonalized predictionsresponsesample collectionsupport vector machinetreatment disparity
项目摘要
ABSTRACT
Warfarin remains one of the most commonly prescribed drugs and a leading cause of emergency
hospitalizations. Warfarin use is especially common in medically underserved patients such as African
Americans (AAs) and Latinos, which is particularly concerning since AAs and Latinos suffer worse outcomes
due to suboptimal warfarin therapy. Thus AAs and Latinos can derive a distinct benefit from warfarin
pharmacogenomic (PGx) algorithms, which maximize safety and efficacy by predicting individualized warfarin
dose. However, currently available PGx algorithms have critical limitations, including a lack of generalizability to
non-white populations and a failure to account for 50 percent of variability in warfarin dose. Under-representation
in clinical studies, the propensity to cause adverse events, and a lack of consideration of admixed populations
in clinical PGx guidelines are all factors that contribute to limited utility of warfarin PGx algorithms in diverse
populations. Many potential sources of warfarin stable dose variability remain critically unexplored, including the
role of vitamin K biosynthesizing bacterial species, the influence of local ancestry at warfarin pharmacogenes,
and the potential for machine learning techniques to enable accurate warfarin dosing algorithms in diverse
populations. This proposal addresses the overarching hypothesis that warfarin stable dose prediction can be
improved by incorporation of gut microbiome data, measures of local ancestry, and machine learning in diverse
populations. We will pursue three Specific Aims (SAs) to test this hypothesis: (SA1) Determine the impact of
abundance of vitamin K biosynthesizing bacteria from the gut microbiome on warfarin stable dose and; (SA2)
Determine the influence of local admixture on warfarin stable dose in admixed populations; (SA3) Optimize
warfarin PGx algorithms for diverse populations using machine learning. In SA#1, we will conduct a clinical study
with fecal sample collection at anticoagulation clinic visits and perform whole genome bacterial sequencing to
identify the effect of vitamin K biosynthesizing bacterial species on warfarin stable dose. In SA#2, we will estimate
African, European, and Native American local ancestry in warfarin pharmacogenes in a large, admixed
population (n=1194) and determine its effects on warfarin stable dose. In SA#3, a large, diverse population of
warfarin treated patients (n=7366) will be used to develop machine learning models and test improved prediction
of warfarin stable dose over existing linear regression models. Our studies overcome major limitations of
previous warfarin PGx studies by leveraging gut microbiome data, local ancestry, machine learning, and diverse,
admixed populations. The outcomes of this work will provide a framework for local ancestry investigation with
other PGx drug-gene pairs, enabling use of clinical PGx guidelines in admixed populations. This research has
the potential to identify new sources of variability in warfarin dose, improve the safety and efficacy of warfarin
treatment, and reduce disparities in PGx research for medically underserved patients.
抽象的
华法林仍然是最常用的处方药物之一,也是紧急情况的主要原因
住院治疗。华法林的使用在医疗服务不足的患者中尤其常见,例如非洲
美国人 (AA) 和拉丁裔,这尤其令人担忧,因为 AA 和拉丁裔的结果更糟
由于华法林治疗不理想。因此,AA 和拉丁裔可以从华法林中获得明显的益处
药物基因组 (PGx) 算法,通过预测个体化华法林来最大限度地提高安全性和有效性
剂量。然而,当前可用的 PGx 算法具有严重的局限性,包括缺乏通用性
非白人群体以及未能解释华法林剂量 50% 的变异性。代表性不足
在临床研究中,导致不良事件的倾向,以及缺乏对混合人群的考虑
临床 PGx 指南中的所有因素都导致华法林 PGx 算法在不同领域的效用有限
人口。华法林稳定剂量变异性的许多潜在来源仍未得到充分探索,包括
维生素 K 生物合成细菌种类的作用、当地血统对华法林药物基因的影响、
以及机器学习技术在不同领域实现准确华法林剂量算法的潜力
人口。该提案提出了一个总体假设,即华法林稳定剂量预测可以
通过整合肠道微生物组数据、当地血统测量和不同领域的机器学习来改进
人口。我们将追求三个具体目标 (SA) 来检验这一假设: (SA1) 确定
华法林稳定剂量下肠道微生物组中维生素 K 生物合成细菌的丰度; (SA2)
确定局部混合对混合人群中华法林稳定剂量的影响; (SA3) 优化
使用机器学习针对不同人群的华法林 PGx 算法。在SA#1中,我们将进行一项临床研究
在抗凝诊所就诊时收集粪便样本并进行全基因组细菌测序
确定维生素 K 生物合成细菌种类对华法林稳定剂量的影响。在 SA#2 中,我们将估计
非洲、欧洲和美洲原住民当地血统中的华法林药物基因存在于一个大型、混合的地区
人群(n=1194)并确定其对华法林稳定剂量的影响。在 SA#3 中,有大量多样化的人口
华法林治疗的患者 (n=7366) 将用于开发机器学习模型并测试改进的预测
华法林稳定剂量与现有线性回归模型的比较。我们的研究克服了主要局限性
之前的华法林 PGx 研究通过利用肠道微生物组数据、当地血统、机器学习和多样化,
混合人群。这项工作的成果将为当地血统调查提供一个框架
其他 PGx 药物基因对,使得能够在混合人群中使用临床 PGx 指南。这项研究有
识别华法林剂量变异新来源的潜力,提高华法林的安全性和有效性
治疗,并减少医疗服务不足患者的 PGx 研究中的差异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hansen Karnes其他文献
Jason Hansen Karnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hansen Karnes', 18)}}的其他基金
Discovery of Immunogenomic Associations with Disease and Differential Risk Across Diverse Populations
发现免疫基因组与不同人群的疾病和差异风险的关联
- 批准号:
10796657 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Precision Medicine for All of Us Researchers Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
为我们所有研究人员提供的精准医学 Collective Medicina de Precision: Colectivo de Investigadores Salud para Todos
- 批准号:
10891233 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10653005 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
ABO and Immunogenetic Variation in the Pathogenesis of Heparin-Induced Thrombocytopenia
肝素诱导的血小板减少症发病机制中的 ABO 和免疫遗传学变异
- 批准号:
10439313 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10270784 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10626114 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
10379303 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
Genomic and Transcriptomic Influences on Heparin-Induced Thrombocytopenia
基因组和转录组对肝素诱导的血小板减少症的影响
- 批准号:
9899307 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
Penile viral and bacterial microbiome, inflammation and HIV susceptibility
阴茎病毒和细菌微生物组、炎症和艾滋病毒易感性
- 批准号:
10646217 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Penile viral and bacterial microbiome, inflammation and HIV susceptibility
阴茎病毒和细菌微生物组、炎症和艾滋病毒易感性
- 批准号:
10402631 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10270784 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10626114 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Investigating the Influences of Sleep‐Wake Patterns and Gut Microbiome Development in Infancy on Rapid Weight Gain, an Early Risk Factor for Obesity
研究婴儿期睡眠-觉醒模式和肠道微生物组发育对体重快速增加的影响,体重快速增加是肥胖的早期危险因素
- 批准号:
9912021 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别: