New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
基本信息
- 批准号:10453875
- 负责人:
- 金额:$ 30.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAge related macular degenerationAlgorithmsAlzheimer&aposs DiseaseBilateralCessation of lifeClinicalClinical ManagementCollectionComplexComputer softwareCustomDataDevelopmentDiagnosticDiseaseDisease ProgressionEventEyeEye diseasesFutureGeneticImageJointsLabelLiteratureMachine LearningMeasuresMethodologyMethodsModelingModernizationNeural Network SimulationObservational StudyOtitis MediaOutcomePatientsPreventionProceduresRandomized Clinical TrialsRecommendationRecurrenceResearchRiskRisk FactorsShapesSoftware ToolsStatistical MethodsStructureSubgroupTestingTherapy trialTimeTreatment EfficacyUniversitiesWomen&aposs Healthbasecomorbiditycomputerized toolsdeep neural networkdisorder preventiondisorder riskear infectionflexibilityfrailtyhigh dimensionalityhigh riskhormone therapyimprovedindividualized medicineinnovationlarge scale dataloss of functionmachine learning methodneural networkneuroimagingnovelpersonalized predictionspersonalized risk predictionprecision medicineprimary endpointsemiparametricstatistical and machine learningsuccesssurvival outcometherapy developmenttreatment effecttreatment planningtrial design
项目摘要
ABSTRACT
In randomized clinical trials and observational studies, multivariate outcomes are increasingly used as co-
primary endpoints to study complex diseases or clinical outcomes comprised of co-morbidities. Some modern
studies also collect large-scale genetics or image data for the potential of individualized risk prediction and
precision medicine development. Moreover, the precise event times for non-fatal events are sometimes
unobservable because the event status can only be determined at intermittent assessment times. The non-
fatal events may also be censored by fatal events (i.e., death) which results in semi-competing risks data. The
complex multivariate survival outcome together with large-scale covariates pose great analytical challenges for
such studies. Inspired by the challenges and opportunities met in our motivating studies for two bilateral
diseases, Age-related Macular Degeneration (AMD) and Acute Otitis Media (AOM), as well as the wealthy data
from the hormone therapy trial in Women Health Initiative (WHI) and the Alzheimer Disease Neuroimaging
Initiative (ADNI), the broad aim of this proposal is to develop new statistical and machine learning methods and
computational tools for analyzing such data. First, we will develop a class of semiparametric copula models
that flexibly joint model the multivariate survival data without ad-hoc data simplification. A rigorous goodness-
of-fit test will be proposed for model diagnostics. Next, using the top risk factors identified from the
semiparametric copula model as inputs, we will develop a multivariate survival deep neural network to predict
individualized disease risk profiles over time, which are critical for personalized disease prevention and clinical
management. Then, based on fundamental multiple testing principles, we propose a novel simultaneous
inference procedure to identify and infer subgroups with enhanced treatment efficacy under our proposed
copula framework. Finally, we will develop a meta-learner framework to estimate individualized treatment
effects and to give treatment recommendation rules. The novel methodology will be immediately applied to the
ongoing AMD, AOM and AD research at the University of Pittsburgh, as well as the data from WHI and ADNI to
facilitate novel analyses for identifying risk factors and assessing treatment effects on disease progression,
recurrence, or prevention. The methodology advances will be applicable to a broad range of studies with
similar data features. In summary, the successful completion of the project will lead to a comprehensive
methodological framework with ready-to-use software packages, which have the potential to fundamentally
improve the current practice in analyzing such studies, and thus to enhance the discovery of disease risk
factors, improve the prediction of disease progression profiles, and increase the success of precision medicine.
抽象的
在随机临床试验和观察性研究中,多变量结果越来越多地被用作联合研究
研究由一些现代并发症组成的复杂疾病或临床结果的主要终点。
研究还收集大规模遗传学或图像数据,以实现个性化风险预测和
此外,非致命事件的精确事件时间有时是准确的。
不可观察,因为事件状态只能在间歇评估时间确定。
致命事件也可能受到致命事件(即死亡)的审查,从而导致半竞争风险数据。
复杂的多变量生存结果与大规模协变量一起构成了巨大的分析挑战
受到我们在两项双边激励研究中遇到的挑战和机遇的启发。
疾病、年龄相关性黄斑变性(AMD)和急性中耳炎(AOM)以及丰富的数据
来自女性健康倡议 (WHI) 中的激素治疗试验和阿尔茨海默病神经影像学
倡议(ADNI),该提案的广泛目标是开发新的统计和机器学习方法,
首先,我们将开发一类半参数联结模型。
灵活地联合建模多变量生存数据,无需临时数据简化。
接下来,将使用从模型中识别出的主要风险因素来进行模型诊断。
半参数 copula 模型作为输入,我们将开发一个多元生存深度神经网络来预测
随着时间的推移,个性化的疾病风险概况,这对于个性化疾病预防和临床至关重要
然后,基于基本的多重测试原则,我们提出了一种新颖的同步管理。
推断程序,用于识别和推断根据我们提出的治疗效果增强的亚组
最后,我们将开发一个元学习器框架来估计个体化治疗。
效果并给出治疗建议规则将立即应用于。
匹兹堡大学正在进行的 AMD、AOM 和 AD 研究,以及来自 WHI 和 ADNI 的数据
促进新的分析,以确定风险因素并评估治疗对疾病进展的影响,
该方法的进步将适用于广泛的研究。
综上所述,该项目的成功完成将带来全面的数据特征。
具有现成可用软件包的方法框架,有可能从根本上
改进当前分析此类研究的实践,从而加强疾病风险的发现
因素,改善疾病进展情况的预测,并提高精准医疗的成功率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Ding其他文献
Ying Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Ding', 18)}}的其他基金
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10631139 - 财政年份:2022
- 资助金额:
$ 30.13万 - 项目类别:
Novel and Robust Methods for Differential Protein Network Analysis of Proteomics Data in Schizophrenia Research
精神分裂症研究中蛋白质组数据差异蛋白质网络分析的新颖而稳健的方法
- 批准号:
9304868 - 财政年份:2016
- 资助金额:
$ 30.13万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
NRI: Toward Safe and Reliable Robotic Eye Examinations
NRI:迈向安全可靠的机器人眼科检查
- 批准号:
10671768 - 财政年份:2023
- 资助金额:
$ 30.13万 - 项目类别:
New statistical methods and software for modeling complex multivariate survival data with large-scale covariates
用于对具有大规模协变量的复杂多变量生存数据进行建模的新统计方法和软件
- 批准号:
10631139 - 财政年份:2022
- 资助金额:
$ 30.13万 - 项目类别:
ER stress-induced translational regulation in retinal degeneration
视网膜变性中内质网应激诱导的翻译调节
- 批准号:
10387323 - 财政年份:2021
- 资助金额:
$ 30.13万 - 项目类别:
Muller cell activation and remodeling in AMD.
AMD 中的 Muller 细胞激活和重塑。
- 批准号:
10547812 - 财政年份:2021
- 资助金额:
$ 30.13万 - 项目类别:
Characterizing Human RPE Cell Proliferation to Advance Endogenous Regeneration
表征人类 RPE 细胞增殖以促进内源性再生
- 批准号:
10337229 - 财政年份:2021
- 资助金额:
$ 30.13万 - 项目类别: