Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
基本信息
- 批准号:10459282
- 负责人:
- 金额:$ 39.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Adrenergic ReceptorAgonistAnesthesia proceduresAnestheticsAreaAuditoryAuditory areaAwarenessBehaviorBrainBrain DiseasesCodeComplexComputer ModelsConsciousCuesDataDeliriumDementiaDexmedetomidineDisinhibitionDoseDreamsElectroencephalographyEnvironmentExperimental DesignsFeedbackFutureGoalsHealthHumanImpairmentIndividualInterneuronsInterventionKetamineLinkMacacaMachine LearningMeasuresMediatingMental DepressionModalityModelingMolecular TargetMonitorN-Methyl-D-Aspartate ReceptorsNeuronsOrganParietal LobePathway interactionsPerceptionPharmacologyProcessPropofolPublic HealthPulvinar structureReaction TimeReportingResearchRoleSchizophreniaSedation procedureSensorySensory ProcessShapesSignal TransductionSleepStudy modelsSystemTemporal LobeTestingThalamic NucleiUnconscious StateUpdateantagonistbaseeffective therapyexperienceexperimental studyfrontal lobehuman dataimprovedinnovationinnovative technologiesinsightmulti-electrode arraysneural correlateneuromechanismneurophysiologynonhuman primatepaired stimulipostsynapticpreventreceptorrelating to nervous systemresponsesedativesensory cortexsensory stimulustherapeutic developmenttransmission processtreatment strategyvisual stimulus
项目摘要
SUMMARY
The standard view of how we make sense of the world around us focuses on reconstructing our environment
from the information received by our sensory organs. In this view, low-level brain areas (e.g., primary sensory
cortex) represent basic features of objects, which are elaborated on in successive processing stages, until
representations become increasingly complex in high-level areas (e.g., frontal cortex). An alternative view is
predictive coding (PC), in which we model our environment to generate sensory predictions. In PC, high-level
brain areas generate predictions of sensory activity and transmit them to low-level areas. A prediction that
does not match the sensory information gives rise to a prediction error. This error signal is sent from low- to
high-level brain areas to update the model of our environment, thereby improving future predictions to minimize
errors. Modeling studies show PC is a fast and efficient way to process sensory information, and PC provides
innovative hypotheses for understanding sleep and anesthesia, particularly when disconnected consciousness
occurs (consciousness without awareness of the environment), like dreaming. PC also holds great promise for
conceptualizing and treating brain disorders, including schizophrenia and depression. But key central features
of PC have not been empirically tested and little is known about the underlying neural mechanisms. The goal
of the proposed project is to characterize the neural dynamics, circuits and receptors enabling PC. There are
two principle hypotheses. First, predictions depend on N-methyl-D-aspartate receptors (NMDAR) because
NMDAR influence the activity of high-level brain areas where predictions are generated, and NMDAR are
enriched on neurons in lower-level areas receiving predictions. Second, in disconnected consciousness, a
breakdown of information transmission from low-level to high-level brain areas, as well as a breakdown of
computations within each area, explains why models of our environment are not updated by external sensory
information. These breakdowns prevent the comparison of predictions and sensory information, as well as the
transmission of prediction errors to high-level brain areas. To test these hypotheses, we use a cross-species
experimental design connecting cellular, circuit and systems levels to behavior. We will perform
electroencephalography, machine learning and computational modeling to define the neural basis of PC in
humans performing prediction tasks. Then we will manipulate PC using different anesthetic agents with diverse
mechanisms, establishing causal relationships between receptors, large-scale brain networks and PC. In
parallel, we will simultaneously record activity from sensory and high-level brain areas of non-human primates
(NHPs) using the same PC tasks and pharmacological interventions to measure cellular and circuit level
contributions to PC. Investigating PC will illuminate the fundamental mechanisms of perception, providing
critical insights to guide therapeutic development for multiple health conditions.
概括
我们如何理解周围世界的标准观点侧重于重建我们的环境
来自我们的感觉器官接收到的信息。按照这种观点,低级大脑区域(例如初级感觉
cortex)代表对象的基本特征,这些特征在连续的处理阶段中得到详细说明,直到
在高层区域(例如额叶皮层),表征变得越来越复杂。另一种观点是
预测编码(PC),我们对环境进行建模以生成感官预测。在 PC 中,高级
大脑区域产生感觉活动的预测并将其传输到低级区域。一个预测是
与感官信息不匹配会导致预测错误。该错误信号从低发送到
高级大脑区域来更新我们的环境模型,从而改进未来的预测,以最大限度地减少
错误。建模研究表明 PC 是一种快速有效的处理感官信息的方式,并且 PC 提供
理解睡眠和麻醉的创新假设,特别是在意识分离的情况下
发生(没有意识到环境的意识),就像做梦一样。 PC 也有很大的前景
概念化和治疗大脑疾病,包括精神分裂症和抑郁症。但关键的核心特征
PC 的作用尚未经过实证检验,并且对潜在的神经机制知之甚少。目标
该项目的主要目的是表征 PC 的神经动力学、电路和受体。有
两个原则假设。首先,预测取决于 N-甲基-D-天冬氨酸受体 (NMDAR),因为
NMDAR 影响生成预测的高级大脑区域的活动,并且 NMDAR
丰富了接受预测的较低级别区域的神经元。其次,在断开的意识中,
从低级大脑区域到高级大脑区域的信息传输中断,以及
每个区域内的计算,解释了为什么我们的环境模型不会被外部感官更新
信息。这些故障阻碍了预测和感官信息的比较,以及
将预测错误传递到高级大脑区域。为了检验这些假设,我们使用跨物种
将细胞、电路和系统级别与行为联系起来的实验设计。我们将表演
脑电图、机器学习和计算建模来定义 PC 的神经基础
人类执行预测任务。然后我们将使用不同的麻醉剂来操纵PC
机制,建立受体、大规模大脑网络和 PC 之间的因果关系。在
与此同时,我们将同时记录非人类灵长类动物的感觉和高级大脑区域的活动
(NHP) 使用相同的 PC 任务和药理学干预措施来测量细胞和回路水平
对个人电脑的贡献。研究 PC 将阐明感知的基本机制,提供
指导多种健康状况的治疗开发的重要见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuri B Saalmann其他文献
Yuri B Saalmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuri B Saalmann', 18)}}的其他基金
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10216373 - 财政年份:2020
- 资助金额:
$ 39.7万 - 项目类别:
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10663208 - 财政年份:2020
- 资助金额:
$ 39.7万 - 项目类别:
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10034682 - 财政年份:2020
- 资助金额:
$ 39.7万 - 项目类别:
Prefrontal cortico-thalamic dynamics in cognitive control
认知控制中的前额皮质丘脑动力学
- 批准号:
9925256 - 财政年份:2016
- 资助金额:
$ 39.7万 - 项目类别:
Prefrontal cortico-thalamic dynamics in cognitive control
认知控制中的前额皮质丘脑动力学
- 批准号:
9134993 - 财政年份:2016
- 资助金额:
$ 39.7万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水体中β2-肾上腺素受体激动剂(PPCPs)间接光降解机理的量子化学与实验研究
- 批准号:22306084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
The Roles of Genetically Distinct Cortical Neuron Types in General-Anesthesia- and Sleep-Induced Slow Waves
遗传上不同的皮质神经元类型在全身麻醉和睡眠引起的慢波中的作用
- 批准号:
10601096 - 财政年份:2022
- 资助金额:
$ 39.7万 - 项目类别:
The Roles of Genetically Distinct Cortical Neuron Types in General-Anesthesia- and Sleep-Induced Slow Waves
遗传上不同的皮质神经元类型在全身麻醉和睡眠引起的慢波中的作用
- 批准号:
10449437 - 财政年份:2022
- 资助金额:
$ 39.7万 - 项目类别:
Portable hand-held proprietary xenon inhaler for rapid reduction of opioid withdrawal symptoms
便携式手持式专有氙气吸入器可快速减少阿片类药物戒断症状
- 批准号:
10390876 - 财政年份:2021
- 资助金额:
$ 39.7万 - 项目类别:
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10216373 - 财政年份:2020
- 资助金额:
$ 39.7万 - 项目类别:
Receptors, microcircuits and hierarchical connectivity in predictive coding and sensory awareness
预测编码和感官意识中的受体、微电路和分层连接
- 批准号:
10663208 - 财政年份:2020
- 资助金额:
$ 39.7万 - 项目类别: