Microstructural Pathway of EPFR Formation and their Decay Mechanisms
EPFR形成的微观结构途径及其衰变机制
基本信息
- 批准号:10341198
- 负责人:
- 金额:$ 25.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAffectAirBiochemicalChargeChemicalsChemistryComplexComputing MethodologiesDangerousnessDegradation PathwayDependenceDevelopmentDustElectron TransportElectronsEnvironmentEnvironmental Risk FactorEnvironmental ScienceExposure toFree Radical FormationFree RadicalsGenerationsGoalsHazardous SubstancesHazardous WasteHazardous Waste SitesHealthHumidityIndividualJointsKnowledgeLaboratoriesLongevityMagnetic ResonanceMetalsMethodsMicroscopicMineralsModelingMolecularNeutronsOxidation-ReductionOxidesParticulate MatterPathway interactionsPhotochemistryPhotonsPowder dose formPreventionPrevention strategyProcessProductionPropertyRadiationReactive Oxygen SpeciesResearchResearch PersonnelRisk AssessmentRoentgen RaysRouteSamplingSignal Recognition ParticleSoilSootSpectrum AnalysisStructureSuperfundSurfaceSystemTechniquesTemperatureToxic effectTranslatingUltrafineVariantWorkbaseclaycomputer studieselectronic structureexperimental studyfly ashinsightinterfacialmanmetal oxidenanoclusternanoparticleoxidationparticlepollutantprogramsrational designremediationsuperfund sitetrendvibration
项目摘要
Project Summary/Abstract: Project 5
There is strong evidence that environmentally persistent free radicals (EPFRs) associated with partic-
ulate matter (PM) and soils found in/around declared and potential Superfund sites pose adverse
health effects. Mitigation of the associated environmental risks requires a detailed understanding of
EPFR-contaminated air and soil systems. Specifically, Project 5 is in direct alignment with SRP Man-
date 4, which is elucidating chemical and physical methods to reduce the amount and toxicity of these
hazardous substances. Project 5 will study the microscopic, or atomistic, properties of EPFR for-
mation, including their remarkable stability in the environment, and will model the resulting influences
of chemical decay on a broad base of metal oxide (MO) platforms. Employing a toolbox of state-of-
the-art experimental and molecular ab initio computational methods across differing material plat-
forms (surfaces, nanoclusters/powders, clays, EPA fly ash, soil), our continued focus is on elucidating
individual details of and corresponding local effects (electronic/chemical/atomic structure) on organic
molecular-metal oxide/center chemisorption, ensuing charge transfer (redox), and consequent chemi-
cal degradation pertinent to EPFR-containing systems such as PM, powders, clays, and real-world
(field EPFR) materials. Our Aims focus on answering three simple questions at an atomistic level: 1)
How do EPFRs chemically form? 2) What causes EPFR decay? and 3) Why are EPFR properties simi-
lar across differing platforms? While our previous efforts have elucidated trends in EPFR formation,
the connection between EPFR decay mechanisms, lifetimes, and dependence on MO—the path to
destabilization/remediation (SRP Mandate 4)—has not yet been addressed and is a main goal of our
project. Although focused primarily on revealing fundamental environmental science, our Project will
work symbiotically with the Center. By identifying material factors from our other SRP Projects and
correlating results across differing material platforms, we will obtain synergistic/antagonistic tendency
parameters for EPFR destabilization/remediation that translate to other Projects, and in turn, initiate
and clarify mitigation and remediation strategies. By employing experimental processes that both
model and recapitulate real world exposures, Project 5 will provide a picture of the microscopic sys-
tems generating the EPFRs and related adsorbate systems, but more importantly, will interrogate ef-
fects that promote/hinder degradation and the corresponding products that influence and enhance
activities across the Center (Projects 1–4 and all the Cores). Integrating closely with and expanded by
Project 4, this will allow our Center to synergistically elucidate the atomic mechanisms of the EPFR
chemistry in a scalable and predictive manner that contributes to understanding biochemical health
effects, mitigation, and remediation of these particle-bound pollutants at Superfund sites.
项目总结/摘要:项目 5
有强有力的证据表明环境持久性自由基 (EPFR) 与颗粒物相关
在已宣布的和潜在的超级基金地点内/周围发现的物质(PM)和土壤造成不利影响
减轻相关的环境风险需要详细了解
具体来说,项目 5 与 SRP Man- 受 EPFR 污染的空气和土壤系统直接一致。
日期 4,阐明了减少这些物质的数量和毒性的化学和物理方法
项目 5 将研究 EPFR 的微观或原子特性:
化,包括它们在环境中的显着稳定性,并将模拟由此产生的影响
使用状态工具箱在广泛的金属氧化物(MO)平台上进行化学衰变。
跨不同材料平台的最先进的实验和分子从头计算方法
形式(表面、纳米团簇/粉末、粘土、EPA 飞灰、土壤),我们持续关注的是阐明
有机物的个别细节和相应的局部影响(电子/化学/原子结构)
分子金属氧化物/中心化学吸附,随后发生电荷转移(氧化还原),以及随后的化学反应
与含有 EPFR 的系统(例如 PM、粉末、粘土和现实世界)相关的钙降解
(EPFR 领域)材料我们的目标集中于在原子层面回答三个简单的问题:1)
EPFR 是如何化学形成的? 2) EPFR 衰减的原因是什么? 3) 为什么 EPFR 的特性相似?
虽然我们之前的努力已经阐明了 EPFR 形成的趋势,
EPFR 衰变机制、寿命和对 MO 的依赖性之间的联系——通往
不稳定/补救(SRP 指令 4)——尚未得到解决,这是我们的主要目标
尽管我们的项目主要侧重于揭示基础环境科学,但我们将
通过识别我们其他 SRP 项目的物质因素,与中心共生。
将不同材料平台的结果关联起来,我们将获得协同/拮抗趋势
EPFR 不稳定/补救的参数可转化为其他项目,进而启动
并通过采用实验过程来阐明缓解和补救策略。
模型并重述现实世界的暴露,项目 5 将提供微观系统的图片
生成 EPFR 和相关吸附物系统的技术,但更重要的是,将询问 ef-
促进/阻碍降解的效应以及影响和增强的相应产物
整个中心的活动(项目 1-4 和所有核心)紧密结合并由其扩展。
项目 4,这将使我们中心能够协同阐明 EPFR 的原子机制
以可扩展和预测的方式研究化学,有助于了解生化健康
这些颗粒结合污染物在超级基金站点的影响、缓解和修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Phillip Sprunger其他文献
Phillip Sprunger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Phillip Sprunger', 18)}}的其他基金
Microstructural Pathway of EPFR Formation and their Decay Mechanisms
EPFR形成的微观结构途径及其衰变机制
- 批准号:
10576464 - 财政年份:2009
- 资助金额:
$ 25.98万 - 项目类别:
Microstructural Pathway of EPFR Formation and their Decay Mechanisms
EPFR形成的微观结构途径及其衰变机制
- 批准号:
10116410 - 财政年份:2009
- 资助金额:
$ 25.98万 - 项目类别:
相似国自然基金
生物炭源DOM-针铁矿晶面互馈对砷吸附与转化的影响机制
- 批准号:42307278
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多糖-纳米硒与黏蛋白非共价诱导的吸附模式对其跨肠黏液层渗透行为的影响机制
- 批准号:32302073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钛表面介孔硅结构通过调控凝血因子XII吸附取向影响纤维蛋白网络的机制探索
- 批准号:82301155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物质炭施加对土壤微界面镉铅竞争吸附和同步固定的影响机制
- 批准号:42307017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层页岩有机纳米孔隙壁面形变对流体吸附和扩散的影响机理研究
- 批准号:52306096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 25.98万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 25.98万 - 项目类别:
Immunotherapeutic nanoparticles: Implications for the treatment of tuberculosis and HIV
免疫治疗纳米粒子:对结核病和艾滋病毒治疗的影响
- 批准号:
10757507 - 财政年份:2023
- 资助金额:
$ 25.98万 - 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
- 批准号:
10354268 - 财政年份:2022
- 资助金额:
$ 25.98万 - 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
- 批准号:
10797600 - 财政年份:2022
- 资助金额:
$ 25.98万 - 项目类别: