High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
基本信息
- 批准号:7736445
- 负责人:
- 金额:$ 31.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBehaviorClinical EngineeringCollectionComplexComplicationComputational ScienceDataDecision Support SystemsDependenceDevelopmentDoseEngineeringEnvironmentExternal Beam Radiation TherapyGenerationsGenetic ProgrammingGoalsIntensity-Modulated RadiotherapyKnowledgeLeadLinear Accelerator Radiotherapy SystemsLinear ProgrammingMachine LearningMapsMedicalMethodsModelingMonte Carlo MethodNIH Program AnnouncementsOrganPatientsPhysiciansPhysicsProcessPropertyRadiationRadiation OncologyRadiation therapyRelative (related person)Research PersonnelRiskSamplingShapesSimulateSolutionsSpeedStructureSurfaceSystemTechnologyTimeToxic effectbasecluster computingcombinatorialcomputer sciencecomputerizedcomputing resourcesdirect applicationgraphical user interfaceheuristicsimprovedinnovationinsightnovelnovel strategiespredictive modelingprocess optimizationprogramspublic health relevanceresearch clinical testingtooltreatment planningtumor
项目摘要
DESCRIPTION (provided by applicant):
Computerized planning for radiation delivery via either external beam radiation therapy (EBRT) or intensity- modulated radiation therapy (IMRT) from linear accelerators is a complex process involving a large amount of input data and vast numbers of decision variables. Such large-scale combinatorial optimization problems are typically intractable for conventional approaches such as the direct application of the best available commercial algorithms, and thus specialized methods that take advantage of problem structure are required. Radiation treatment planning (RTP) problems are further complicated by the fact that they are multi-objective, that is, the RTP optimization process must take into account a trade-off between the competing goals of delivering appropriate doses to the tumor and avoiding the delivery of harmful radiation to nearby healthy organs. The goal of this proposal is to harness distributive computing via the Condor system for High Throughput Computing (HTC) within an RTP environment. The specific aims for this proposal are: 1) To develop a Nested Partitions (NP) framework that guides a global search process for optimal IMRT delivery parameters using HTC. 2) To develop parallel HTC-based linear programming (LP) methods to efficiently solve the dose optimization problem in IMRT for each given set of beam angles or beam apertures. (3) To exploit a high-throughput computing (HTC) environment and the developed NP/LP/segmentation framework to efficiently generate multiple plans for each given patient case. (4) To couple this multi-plan framework with a decision support system (DSS) that includes planning surface models, a graphical-user-interface (GUI) and machine learning tools to prediction OAR complication in order to aid in the ranking and selection of the generated treatment plans. This proposal requires a multi-disciplinary approach that is best conducted within the framework of the Innovations in Biomedical Computational Science and Technology program announcement. It brings together an interdisciplinary team of investigators with expertise in medical physics, mathematical programming, industrial engineering and clinical radiation oncology that is crucial to the development of the proposed multi- plan framework using HTC in radiation therapy. PUBLIC HEALTH RELEVANCE: The goal of this proposal is to develop a multi-dimensional platform for sophisticated treatment planning of radiation delivery. It will develop novel algorithms that will enable generation of superior treatment plans with the added advantage of increasing the speed of treatment planning. Further, it will allow physicians to know beforehand the quality of the treatment plan relative to the multiple treatment objectives and be able to determine the treatment complication scenario beforehand.
描述(由申请人提供):
通过外部梁辐射疗法(EBRT)或线性加速器的强度调制辐射疗法(IMRT)进行辐射的计算机计划是一个复杂的过程,涉及大量输入数据和大量决策变量。这种大规模的组合优化问题通常对于常规方法(例如直接应用最佳的可用商业算法)来说是很棘手的,因此需要使用利用问题结构的专门方法。辐射治疗计划(RTP)问题是由于它们具有多目标的事实,即RTP优化过程必须考虑到将适当的剂量传递给肿瘤的竞争目标与避免向附近健康器官提供有害辐射的竞争目标之间的权衡。该提案的目的是通过Condor系统在RTP环境中利用高吞吐量计算(HTC)进行分配计算。该建议的具体目的是:1)开发一个嵌套分区(NP)框架,该框架使用HTC指导全局搜索过程,以实现最佳IMRT交付参数。 2)开发基于HTC的平行线性编程(LP)方法,以有效地为IMRT中的每组束角或梁孔径在IMRT中解决剂量优化问题。 (3)利用高通量计算(HTC)环境和开发的NP/LP/分割框架,以有效地为每个给定的患者案例生成多个计划。 (4)将这个多计划框架与决策支持系统(DSS)搭配,其中包括规划表面模型,图形 - 用户接口(GUI)和机器学习工具,以预测OAR并发症,以帮助制定生成的治疗计划的排名和选择。该建议需要一种多学科的方法,该方法最好在生物医学计算科学技术计划公告的创新框架内进行。它汇集了一个研究人员的跨学科团队,该团队在医学物理学,数学编程,工业工程和临床放射肿瘤学方面具有专业知识,这对于使用HTC使用HTC进行放射治疗的拟议多计划框架至关重要。公共卫生相关性:该提案的目的是开发一个多维平台,用于辐射提供的复杂治疗计划。它将开发出新颖的算法,该算法将能够生成卓越的治疗计划,并提高治疗速度。此外,这将使医生可以事先了解相对于多个治疗目标的治疗计划的质量,并能够事先确定治疗并发症情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WARREN D D'SOUZA其他文献
WARREN D D'SOUZA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WARREN D D'SOUZA', 18)}}的其他基金
High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
- 批准号:
8271284 - 财政年份:2009
- 资助金额:
$ 31.74万 - 项目类别:
High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
- 批准号:
8077861 - 财政年份:2009
- 资助金额:
$ 31.74万 - 项目类别:
High-Throughput Computing for a Multi-Plan Framework in Radiotherapy
放射治疗多计划框架的高吞吐量计算
- 批准号:
7845650 - 财政年份:2009
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
- 批准号:
7892330 - 财政年份:2007
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
- 批准号:
8134253 - 财政年份:2007
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
- 批准号:
7672268 - 财政年份:2007
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
- 批准号:
7492304 - 财政年份:2007
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
- 批准号:
7318613 - 财政年份:2007
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control of Respiration Induced Tumor Motion with a Treatment Couch
使用治疗床对呼吸引起的肿瘤运动进行反馈控制
- 批准号:
8288891 - 财政年份:2007
- 资助金额:
$ 31.74万 - 项目类别:
Feedback Control and Inferential Modeling for Radiotherapy Treatment Couch
放射治疗床的反馈控制和推理建模
- 批准号:
7131144 - 财政年份:2006
- 资助金额:
$ 31.74万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工智能反馈寻求行为的驱动机制和双刃剑效应研究
- 批准号:72302082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
消费者对算法决策的厌恶:行为表征、应对方式及干预措施
- 批准号:72302031
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 31.74万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 31.74万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 31.74万 - 项目类别:
NeuroMAP Phase II - Data Management and Statistics Core
NeuroMAP 第二阶段 - 数据管理和统计核心
- 批准号:
10711138 - 财政年份:2023
- 资助金额:
$ 31.74万 - 项目类别:
Resilient Emotion Regulation Development in a South African Birth Cohort
南非出生队列的弹性情绪调节发展
- 批准号:
10656016 - 财政年份:2023
- 资助金额:
$ 31.74万 - 项目类别: