Targeting pathologic spike-ripples to isolate and disrupt epileptic dynamics
针对病理性尖峰波纹来隔离和破坏癫痫动力学
基本信息
- 批准号:10322163
- 负责人:
- 金额:$ 68.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAffectAnimal ExperimentsAnimal ModelAutomobile DrivingBiologicalBiological MarkersBrainBrain DiseasesBrain regionCaringClinicalClinical DataComputer ModelsComputer SimulationConsumptionDiffuseElectric StimulationEpilepsyEventExcisionFailureGenerationsHigh Frequency OscillationHumanImageImaging TechniquesIndividualInstitutionInterventionIntractable EpilepsyMachine LearningMedicalMethodsModelingModernizationMonitorNeuronsOperative Surgical ProceduresOpticsPathologicPathologic ProcessesPatient CarePatientsPatternPersonsPharmaceutical PreparationsPhysiologicalPhysiological ProcessesProtocols documentationRecurrenceRefractoryResearchResectedSeizuresSignal TransductionSpecificityTestingTimeTissuesTreatment Efficacyclinical practicedetectoreffective therapyexcitatory neuronexperimental studyhuman dataimaging approachimprovedin silicoin vivoinhibitory neuronlarge datasetsmodels and simulationmouse modelneurophysiologyneuroregulationneurosurgerynovelpreventstatisticssuccessful interventionsurgery outcomevoltage
项目摘要
Project Summary
Epilepsy is the world’s most common, serious brain disorder, affecting nearly 50 million people worldwide. For
one-third of patients, seizures remain poorly controlled despite maximal medical management. In these patients,
seizures often arise from a localized brain region, and neurosurgical interventions are the most effective
treatment option. When successful, surgical interventions provide cure from seizures, and also prevent or
reverse the disabling consequences of uncontrolled seizures. Critical to successful intervention is accurate
identification of the core tissue responsible for generating seizures (i.e., the epileptogenic zone). Traditionally,
this tissue would be surgically resected, but modern approaches aim to focally disrupt this tissue with targeted
electrical stimulation (i.e. neuromodulation). Improvements in epilepsy care are now limited by (i) the inability to
accurately identify the epileptogenic zone; (ii) a limited understanding of the mechanisms underlying epileptiform
activity; (iii) a lack of understanding of how to target these mechanisms with neurostimulation. The most common
approach to identify the epileptogenic zone is through continuous recording of a patient’s cortical electrical
activity to capture seizures. However, because seizures are infrequent, this approach is expensive, time
consuming, and unpleasant for patients. Moreover, this approach often fails to identify the epileptogenic zone,
resulting in unsuccessful neurosurgical intervention in 20-70% of cases. To address this, interictal biomarkers of
the epileptogenic zone that manifest between seizures are required. Two such biomarkers have been proposed:
(a) interictal discharges or spikes, and (b) high frequency oscillations or ripples. While both signals have been
extensively studied, neither accurately delimits the epileptogenic zone. Spikes are specific for epilepsy, but too
spatially diffuse to identify the epileptogenic zone. Ripples are spatially focal, but represent both pathologic and
physiologic processes. We address these limitations by focusing on the simultaneous occurrence of a spike and
ripple, “spike-ripple” discharges, as an improved biomarker for the epileptogenic zone. Spike-ripples commonly
occur in patients with epilepsy, improve the spatial specificity of spikes for the epileptogenic zone, and
disentangle physiologic from pathologic ripples. Our interdisciplinary team will apply expertise in epilepsy,
neurophysiology, neurosurgery, animal experiments, modeling, and statistics to: (i) develop a fully automated
spike-ripple detector and compare its clinical utility to predict surgical outcome to spikes and ripples alone, (ii)
identify the biological mechanisms that generate spike-ripple discharges using novel voltage imaging techniques
in animal models combined with computational models; and (iii) develop principled neurostimulation protocols to
disrupt the mechanisms that generate spike-ripples. Completion of these Aims will represent significant progress
towards resolving fundamental questions in modern epilepsy research, an understanding of mechanisms in the
core epileptogenic network that generate spike-ripples, and a principled approach to neurostimulation to focally
disrupt these pathologic dynamics.
项目概要
癫痫是世界上最常见、最严重的脑部疾病,影响着全世界近 5000 万人。
尽管采取了最大程度的医疗管理,仍有三分之一的患者癫痫发作仍得不到控制。
癫痫发作通常来自局部大脑区域,神经外科干预是最有效的
治疗选择 如果成功,手术干预可以治愈癫痫发作,也可以预防或预防癫痫发作。
扭转失控癫痫发作的致残后果是成功干预的关键。
识别导致癫痫发作的核心组织(即致癫痫区)。
该组织将被手术切除,但现代方法旨在通过有针对性的方法来局部破坏该组织
电刺激(即神经调节)的改善现在受到以下因素的限制:(i) 无法
准确识别癫痫发生区;(ii) 对癫痫样机制的了解有限;
活动;(iii) 缺乏对如何通过神经刺激来靶向这些机制的了解。
识别致痫区的方法是通过连续记录患者的皮质电
然而,由于癫痫发作并不频繁,这种方法既昂贵又耗时。
而且,这种方法通常无法识别致癫痫区域,
导致 20-70% 病例的神经外科干预失败。
已经提出了两个这样的生物标志物:
(a) 发作间期放电或尖峰,以及 (b) 高频振荡或纹波,同时两个信号都已被检测到。
研究表明,两者都不能准确界定癫痫发生区,但尖峰也不是癫痫所特有的。
空间扩散以识别致癫痫区域。波纹在空间上是焦点,但代表病理性和病理性。
我们通过关注同时发生的尖峰和生理过程来解决这些局限性。
波纹,“尖峰波纹”放电,通常作为尖峰波纹的改进生物标志物。
发生在癫痫患者中,提高癫痫发生区尖峰的空间特异性,以及
我们的跨学科团队将运用癫痫方面的专业知识,将生理波动与病理波动分开。
神经生理学、神经外科、动物实验、建模和统计学,以:(i)开发完全自动化的
尖峰波纹检测器并比较其临床实用性以单独预测尖峰和波纹的手术结果,(ii)
使用新型电压成像技术识别产生尖峰纹波放电的生物机制
与计算模型相结合的动物模型;以及(iii)开发原则性的神经刺激方案
破坏产生尖峰波动的机制。这些目标的完成将代表着重大进展。
解决现代癫痫研究中的基本问题,了解癫痫的机制
产生尖峰波纹的核心致癫痫网络,以及局部神经刺激的原则方法
破坏这些病理动态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine J Chu其他文献
Catherine J Chu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine J Chu', 18)}}的其他基金
Targeting Pathologic Spike-Ripples to Isolate and Disrupt Epileptic Dynamics
针对病理性尖峰波纹来隔离和破坏癫痫动力学
- 批准号:
10526434 - 财政年份:2021
- 资助金额:
$ 68.31万 - 项目类别:
Targeting pathologic spike-ripples to isolate and disrupt epileptic dynamics
针对病理性尖峰波纹来隔离和破坏癫痫动力学
- 批准号:
10096727 - 财政年份:2021
- 资助金额:
$ 68.31万 - 项目类别:
Focal Thalamocortical Circuit Dysfunction Mediates Motor and Cognitive Deficits in Developmental Epilepsy
局灶性丘脑皮质回路功能障碍介导发育性癫痫的运动和认知缺陷
- 批准号:
10570912 - 财政年份:2020
- 资助金额:
$ 68.31万 - 项目类别:
Focal thalamocortical circuit dysfunction mediates motor and cognitive deficits in developmental epilepsy
局灶性丘脑皮质回路功能障碍介导发育性癫痫的运动和认知缺陷
- 批准号:
10359112 - 财政年份:2020
- 资助金额:
$ 68.31万 - 项目类别:
Focal thalamocortical circuit dysfunction mediates motor and cognitive deficits in developmental epilepsy
局灶性丘脑皮质回路功能障碍介导发育性癫痫的运动和认知缺陷
- 批准号:
10158524 - 财政年份:2020
- 资助金额:
$ 68.31万 - 项目类别:
Identification of Cortical Biomarkers for Seizure Risk in Childhood Epilepsy
儿童癫痫发作风险的皮质生物标志物的鉴定
- 批准号:
9034013 - 财政年份:2015
- 资助金额:
$ 68.31万 - 项目类别:
Identification of Cortical Biomarkers for Seizure Risk in Childhood Epilepsy
儿童癫痫发作风险的皮质生物标志物的鉴定
- 批准号:
9133481 - 财政年份:2015
- 资助金额:
$ 68.31万 - 项目类别:
Identification of Cortical Biomarkers for Seizure Risk in Childhood Epilepsy
儿童癫痫发作风险的皮质生物标志物的鉴定
- 批准号:
9487038 - 财政年份:2015
- 资助金额:
$ 68.31万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 68.31万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 68.31万 - 项目类别:
Advancing visible light optical coherence tomography in glaucoma detection
推进可见光光学相干断层扫描在青光眼检测中的应用
- 批准号:
10567788 - 财政年份:2023
- 资助金额:
$ 68.31万 - 项目类别:
Investigating Astrocytic Glutamate and Potassium Dynamics in the Healthy and Injured Brain
研究健康和受伤大脑中星形胶质细胞谷氨酸和钾的动态
- 批准号:
10754425 - 财政年份:2023
- 资助金额:
$ 68.31万 - 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 68.31万 - 项目类别: