Nanodiamond Quantum Sensors for Free Radical Detection
用于自由基检测的纳米金刚石量子传感器
基本信息
- 批准号:10325762
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseBenchmarkingBiologicalBiologyCardiovascular DiseasesCataractCellsChemicalsChemistryCoupledDNADataDetectionDevelopmentDiabetes MellitusDiamondDiseaseDisease ProgressionDown SyndromeDyesElectron Spin Resonance SpectroscopyEnvironmentExhibitsFamilyFluorescenceFree RadicalsGoldHealthHumanHydroxylamineImageIn VitroKineticsLabelLigandsLipidsLocationLongitudinal StudiesMagnetismMalignant NeoplasmsMeasurementMeasuresMediator of activation proteinMethodsMitochondriaModelingMolecular ProbesNitrogenOptical MethodsOpticsOutcomeOxidative StressParkinson DiseasePathogenesisPathway interactionsPhasePhotobleachingPhototoxicityProductionPropertyProteinsProtocols documentationPublicationsRNAReactionReactive Oxygen SpeciesReportingReproducibilityResearchResearch PersonnelResolutionRoleSalvelinusSchemeSignal PathwaySignal TransductionSiteSmall Business Innovation Research GrantSourceSpecificitySpecimenSpin TrappingSuperoxidesSurfaceSystemTissuesToxic effectXanthine Oxidaseadductbasebiomaterial compatibilitycellular imagingchemical stabilitychemical synthesisclinical diagnosticscommercializationdensitydesignimaging capabilitiesimplementation barriersimprovedin vitro testingmacrophagenanodiamondnervous system disordernew technologynoveloxidative damageparticleprototypequantumsensortemporal measurementtool
项目摘要
Summary
Reactive oxygen species (ROS) are key mediators in human health but when misregulated can contribute to the
progression of many diseases (e.g., cardiovascular disease, Parkinson's disease, Alzheimer's disease, cancer,
Down's syndrome, cataract, several neurological disorders, etc.). While biological effects of ROS are thought to
be determined by their both spatial (subcellular localization) and temporal (duration of exposure) levels, detailed
understanding of site-specific ROS intracellular concentrations and their relationship to the disease pathogenesis
is currently missing. The main reason for this is the commercial unavailability of experimental tools to detect and
characterize ROS at specific cellular locations with sufficient sensitivity and spatial and temporal resolution.
Electron paramagnetic resonance (EPR) is considered to be the gold standard for unambiguous chemical
identification of ROS by spin-trapping methods. However, the technical barriers for implementation are high, and
efforts toward developing EPR-based imaging of ROS within a biological environment have proven difficult.
Methods based on changes in fluorescence emission upon reactions of a dye with ROS are more accessible
than EPR. While such optical methods can be readily combined with cellular imaging, the current
implementations are riddled with difficulties including lack of specificity in ROS detection, toxicity concerns,
artefactual ROS production by the probes themselves, signal variability due to high levels of background
fluorescence and, importantly, photobleaching. This phase I proposal advances the field of ROS detection by
developing a new family of nanodiamond (ND) based bright fluorescent ROS sensors that will combine the
specificity and information content of EPR spin trapping with the advanced imaging capabilities enabled by
optical probes without the problems of phototoxicity and photobleaching. Our pathway to commercialization
assembles a team with expertise in ND processing and commercialization, development of cutting-edge ROS
detection schemes in EPR and chemical synthesis, and expertise in free radical biology and oxidative stress.
Phase I is aimed at demonstrating a proof-of-principle prototype ROS sensor which consists of spin-reactive
molecules crafted on ND surface and correlating fluorescence and EPR data. The ROS sensor will then be
tested in vitro to detect superoxide radical produced by a xanthine oxidase system and then detection and
imaging ROS in RAW264.7 macrophages. Benchmarking of ND over conventional ROS optical probes will be
aimed to demonstrate advantages of ND ROS sensors in extending the observation period and reducing results'
variability. Commercialization of these new ROS detection tools will enable longitudinal studies of site-specific
ROS production in cells and tissue to advance the understanding of the roles of ROS and oxidative stress in the
pathogenesis and progression of diseases not otherwise achievable. Moreover, the adaption ND-NV-based spin
probes to ex vivo clinical diagnostics has high a commercial potential.
概括
活性氧 (ROS) 是人类健康的关键介质,但如果调节不当,可能会导致
许多疾病(例如心血管疾病、帕金森病、阿尔茨海默病、癌症、
唐氏综合症、白内障、几种神经系统疾病等)。虽然 ROS 的生物效应被认为
由它们的空间(亚细胞定位)和时间(暴露持续时间)水平决定,详细
了解位点特异性细胞内 ROS 浓度及其与疾病发病机制的关系
目前失踪。造成这种情况的主要原因是用于检测和分析的实验工具在商业上不可用。
具有足够的灵敏度和空间和时间分辨率来表征特定细胞位置的 ROS。
电子顺磁共振(EPR)被认为是明确化学的黄金标准
通过自旋捕获方法识别ROS。但实施的技术壁垒较高,
事实证明,在生物环境中开发基于 EPR 的 ROS 成像的努力很困难。
基于染料与 ROS 反应时荧光发射变化的方法更容易实现
比 EPR 。虽然这种光学方法可以很容易地与细胞成像相结合,但目前的
实施过程中充满了困难,包括 ROS 检测缺乏特异性、毒性问题、
探针本身产生人工 ROS,高水平背景导致信号变化
荧光,以及重要的是光漂白。该第一阶段提案通过以下方式推进了 ROS 检测领域:
开发基于纳米金刚石 (ND) 的新系列明亮荧光 ROS 传感器,该传感器将结合
EPR 自旋捕获的特异性和信息内容,以及先进的成像功能
光学探针不存在光毒性和光漂白问题。我们的商业化之路
组建了一支在 ND 加工和商业化、尖端 ROS 开发方面拥有专业知识的团队
EPR 和化学合成中的检测方案,以及自由基生物学和氧化应激方面的专业知识。
第一阶段旨在展示原理验证原型 ROS 传感器,该传感器由自旋反应
在 ND 表面制作的分子以及关联荧光和 EPR 数据。 ROS 传感器将被
体外测试检测黄嘌呤氧化酶系统产生的超氧自由基,然后检测和
RAW264.7 巨噬细胞中的 ROS 成像。 ND 相对于传统 ROS 光学探针的基准测试将是
旨在展示ND ROS传感器在延长观察周期和减少结果方面的优势
可变性。这些新的 ROS 检测工具的商业化将使特定位点的纵向研究成为可能
细胞和组织中 ROS 的产生,促进对 ROS 和氧化应激在细胞和组织中的作用的理解
疾病的发病机制和进展是其他方法无法实现的。此外,基于 ND-NV 的自旋适应
离体临床诊断探针具有很高的商业潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX I. SMIRNOV其他文献
ALEX I. SMIRNOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX I. SMIRNOV', 18)}}的其他基金
Upgrade of Bruker Time-domain EPR Spectrometer
布鲁克时域EPR光谱仪升级
- 批准号:
10431412 - 财政年份:2022
- 资助金额:
$ 25.66万 - 项目类别:
Lipid nanotube arrays for membrane protein biochips
用于膜蛋白生物芯片的脂质纳米管阵列
- 批准号:
7010680 - 财政年份:2005
- 资助金额:
$ 25.66万 - 项目类别:
Lipid nanotube arrays for membrane protein biochips
用于膜蛋白生物芯片的脂质纳米管阵列
- 批准号:
7350191 - 财政年份:2005
- 资助金额:
$ 25.66万 - 项目类别:
Lipid nanotube arrays for membrane protein biochips
用于膜蛋白生物芯片的脂质纳米管阵列
- 批准号:
6861523 - 财政年份:2005
- 资助金额:
$ 25.66万 - 项目类别:
Lipid nanotube arrays for membrane protein biochips
用于膜蛋白生物芯片的脂质纳米管阵列
- 批准号:
7174700 - 财政年份:2005
- 资助金额:
$ 25.66万 - 项目类别:
COMPARATIVE SPIN LABEL SPECTRA AT X BAND (9 5 GHZ) & W BAND (95 GHZ)
X 波段 (9 5 GHZ) 的自旋标签光谱比较
- 批准号:
6120618 - 财政年份:1998
- 资助金额:
$ 25.66万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别: