Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
基本信息
- 批准号:10312509
- 负责人:
- 金额:$ 78.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-21 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnhedoniaAnxietyBayesian ModelingBehavioralCategoriesCharacteristicsClassificationClinicalClinical DataCognitive TherapyComputer ModelsComputing MethodologiesCoupledDataDepressed moodDevelopmentDiagnosisDiagnosticDimensionsDiseaseElementsEnsureEnvironmentImageIndividualLeadLearningLinkMachine LearningManualsMeasuresMental DepressionMental HealthMental disordersModelingMoodsNational Institute of Mental HealthNegative ValenceNeurosciencesOutcomeParticipantPositioning AttributePositive ValenceProcessProtocols documentationPsychiatryPsychopathologyRandomizedResearch Domain CriteriaRewardsRoleSamplingScientistSpecificityStructureSymptomsTask PerformancesTechniquesTestingTimeTranslatingValidationVisitWorkarmbaseclinically relevantclinically significantimprovednegative moodneurobehavioralneuroimagingnovelsymptom treatmenttrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Evidence indicates that disruptions in loss and reward valuation exist across traditional psychiatric diagnostic
categories, and these elements are featured in the NIMH Research Domain Criteria matrix. However,
validating these features of the RDoC matrix and determining the translational utility of loss and reward
valuation requires at least three critical advances: i) understanding the elements’ relational structure (i.e., to
what extent are loss and reward valuation linked or distinct), ii) establishing the functional relevance of
valuation measures (i.e., which features of loss and reward valuation are related to which symptoms), and iii)
determining the stability or lack thereof of the elements and relationships between the elements (i.e.,
determining which valuation features are state-like vs trait-like). To work toward validating valuation elements
and their relevance to psychopathology, we respond to RFA-MH-19-242 (Computational Approaches for
Validating Dimensional Constructs of Relevance to Psychopathology). Specifically, we take a data-driven,
computational psychiatry approach merging clinical and experimental data to delineate relationships among
computationally derived components of loss and reward valuation and with symptoms in a large sample of
participants with clinically significant mood, anxiety, or anhedonia (Aim 1). In Aims 2 and 3, we incorporate a
mechanistic trial to assess whether components of and relationships between loss and reward valuation are
sensitive to change a) over time, b) following 12 sessions of instructed valuation (Aim 2), or c) following
cognitive behavioral therapy (Aim 3). If successful, we believe there is immense opportunity to bridge
behaviorally-oriented clinicians and computational (neuro)scientists and advance the field by mapping
symptoms to neuromechanistic disease processes and spurring the development of new neurobehaviorally-
guided treatment approaches. As required by the RFA, this application assesses multiple constructs (loss and
reward valuation constructs and learning subconstructs) in the Negative and Positive Valence RDoC domains,
using multiple tasks and levels of data.
项目概要/摘要
有证据表明,传统精神病学诊断中存在损失和回报评估的中断
类别,并且这些要素在 NIMH 研究领域标准矩阵中有所体现。
验证 RDoC 矩阵的这些特征并确定损失和奖励的转化效用
评估至少需要三个关键进展:i)理解元素的关系结构(即,
损失和回报评估在多大程度上相关或不同),ii)建立功能相关性
估值措施(即损失和回报估值的哪些特征与哪些症状相关),以及 iii)
确定要素的稳定性或缺乏稳定性以及要素之间的关系(即,
确定哪些评估特征是类似状态的,哪些是类似特征的),以努力验证评估要素。
及其与精神病理学的相关性,我们回应 RFA-MH-19-242(计算方法)
具体来说,我们采取数据驱动的方式,
计算精神病学方法合并临床和实验数据来描绘之间的关系
计算得出的损失和奖励评估的组成部分以及大样本中的症状
具有临床显着情绪、焦虑或快感缺乏的参与者(目标 1),我们纳入了目标 2 和目标 3。
评估损失和回报评估的组成部分和之间的关系是否是机械性试验
对变化敏感 a) 随着时间的推移,b) 经过 12 次指导评估后(目标 2),或 c) 以下
认知行为疗法(目标 3)如果成功,我们相信有巨大的机会来弥补。
以行为为导向的人群和计算(神经)科学家,并通过绘图推进该领域
神经机械疾病过程的症状并刺激新的神经行为的发展
根据 RFA 的要求,该应用程序评估多种结构(损失和治疗)。
负价和正价 RDoC 领域中的奖励评估结构和学习子结构,
使用多个任务和数据级别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEARL H CHIU其他文献
PEARL H CHIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEARL H CHIU', 18)}}的其他基金
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
- 批准号:
10453962 - 财政年份:2022
- 资助金额:
$ 78.89万 - 项目类别:
Sub-second neurochemistry of error signals and affective processing in depression
抑郁症中错误信号和情感处理的亚秒神经化学
- 批准号:
10665721 - 财政年份:2022
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10378098 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10455059 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10552640 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
- 批准号:
10629370 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、社会信号的神经敏感性和结果之间建立联系
- 批准号:
10490468 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10647805 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Making connections among social ties, neural sensitivity to social signals, and outcomes
在社会关系、对社会信号的神经敏感性和结果之间建立联系
- 批准号:
10200497 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Social influences on choices in adolescent substance use
社会对青少年物质使用选择的影响
- 批准号:
10220529 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
相似国自然基金
基底外侧杏仁核区神经微环路在电针改善幼年氯胺酮麻醉暴露所致青春期焦虑中的作用机制研究
- 批准号:82304924
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腹侧海马CaMKⅡ神经元Tau蛋白聚集在阿尔茨海默病焦虑中的作用及机制研究
- 批准号:82301622
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腹侧海马星形胶质细胞参与焦虑症发病的机制研究
- 批准号:82371513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
青少年焦虑的预测和干预:基于跨通道恐惧泛化视角
- 批准号:32300928
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
催产素系统在社交隔离中功能紊乱导致焦虑样和抑郁样行为的神经机制研究
- 批准号:32371058
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Neuro-computational predictors of treatment responsiveness in trauma-exposed Veterans.
遭受创伤的退伍军人治疗反应的神经计算预测因子。
- 批准号:
10580396 - 财政年份:2023
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10455059 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
Evaluating overlap and distinctiveness in neurocomputational loss and reward elements of the RDoC matrix
评估 RDoC 矩阵的神经计算损失和奖励元素的重叠和独特性
- 批准号:
10647805 - 财政年份:2021
- 资助金额:
$ 78.89万 - 项目类别:
CRCNS: Neurocomputational Study of Reward-Related Decision-Making & Uncertainty
CRCNS:奖励相关决策的神经计算研究
- 批准号:
9916054 - 财政年份:2019
- 资助金额:
$ 78.89万 - 项目类别:
CRCNS: Neurocomputational Study of Reward-Related Decision-Making & Uncertainty
CRCNS:奖励相关决策的神经计算研究
- 批准号:
10021445 - 财政年份:2019
- 资助金额:
$ 78.89万 - 项目类别: