Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
基本信息
- 批准号:10312280
- 负责人:
- 金额:$ 4.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgricultureAlgaeAlgal BloomsAsthmaBacteriaBiological AssayBiological MarkersCategoriesCessation of lifeChemistryCircadian RhythmsClassificationClimateCommunitiesDataData SetDermatitisDetectionDevelopmentDisastersEcosystemEventEvolutionExhibitsExperimental DesignsExposure toFamilyFishesFoundationsFutureGoalsGovernmentGroupingHealthHealth Care CostsHourHumanIndividualIndustryInvestigationIronLeadLinkMass Spectrum AnalysisMetabolicMetalsMethodsMissionModelingMolecularNational Institute of Environmental Health SciencesNervous System TraumaPatternPeptidesPeriodicityPersonal SatisfactionPhytoplanktonPoisonProteinsPublic HealthRecording of previous eventsResearchResolutionRiskSafetySamplingScienceScientistSiteSumTaxonomyTestingTimeToxic effectToxicity TestsToxinWashingtonWaterWorkbasebiomarker developmentcandidate markercircadiancontaminated drinking watercontaminated waterexposed human populationfunctional groupharmful algal bloomsimprovedinnovationinsightinstrumentationmetagenomemetaproteomicsmicrobial communitymicrobiomemicrobiome analysismicroorganismpeptide Ipotential biomarkerpredictive markerpredictive testpreventprogramsprotein expressionresponsesoundsuccesstoolundergraduate studentwater qualitywater samplingwater treatment
项目摘要
Project Abstract
Harmful algal blooms (HABs) are a reoccurring toxic event threatening public health through the contamination
of water quality worldwide. Various toxic phytoplankton species regularly undergo bloom events in both coastal
and inland water bodies, wreaking havoc for water treatment facilities, fishing, and recreational industries,
amassing ~$11 billion annually in healthcare costs related to human exposure. As changes in climate and
agriculture continue to alter water chemistry, bloom events have been observed to occur more frequently, last
longer, and release a wider range of toxic chemicals. Currently, there exists no method for predicting bloom
onset, leaving the public vulnerable to a spectrum of potentially avoidable harmful toxins.
A long history of shared ecosystems and co-occurring evolution has established a close relationship between
HAB-forming phytoplankton and their microbiome. Bacteria have been shown to respond to the photosynthetic
circadian rhythm of the algae, mimicking circadian patterns in the expression of metabolically necessary proteins.
A significant change in the ecosystem is likely to cause reactionary changes in patterns of protein expression,
detectable as either individual peptides or peptide-groups sharing similar taxonomic origin or functional category.
If the established circadian rhythmicity of a peptide or group of peptides is lost >24 hours prior to HAB initiation,
it could be used as an indicator to predict impending bloom toxicity. I hypothesize that tracking the quantified
expressed peptides of the HAB-associated microbiome will allow me to detect rhythmicity and the loss of
rhythmicity of those peptides; these peptides, or groups of peptides, can serve as biomarkers to be
developed as bioassays or probes for forecasting HABs to better warn the public.
For this project, I will be collecting time-dependent water samples of the microbiome surrounding the known
HAB-forming phytoplankton Pseudo-nitzschia biannually in Puget Sound, WA. My experimental design includes
working with Washington’s Sound Toxins Program to conduct high-resolution sampling of the phytoplankton
microbiome every 4 hours beginning 2 weeks prior to a predicted bloom event and sampling until HAB-toxins
peak. I will then analyze the microbiome samples using quantitative data-independent acquisition mass
spectrometry methods to establish time-dependent peptide abundances. These peptides will be grouped and
annotated into all potential taxonomic and functional groups using MetaGOmics and time-course data will be
analyzed using Rhythmicity Analysis Incorporating Non-parametric methods. This will allow me to detect
rhythmicity from individual peptides (AIM 1) and peptides grouped by taxa or function (AIM 2) prior to the bloom
event. Peptides or peptide groups exhibiting significant changes in or loss of rhythmicity prior to bloom onset
represent potential biomarkers for the future development of a rapid molecular peptide-based assay or probe for
predicting HAB events. This project uses advances in metaproteomic methods to prevent harmful human
exposure to HAB toxins by predicting bloom onset using microbiome biomarker peptide groups.
项目摘要
有害藻华 (HAB) 是一种反复发生的有毒事件,通过污染威胁公众健康
各种有毒浮游植物物种经常在沿海地区发生水华事件。
和内陆水体,对水处理设施、渔业和娱乐业造成严重破坏,
由于气候和环境的变化,与人类接触相关的医疗费用每年增加约 110 亿美元。
农业继续改变水的化学性质,据观察,水华事件发生得更加频繁,最后
时间更长,释放的有毒化学物质范围更广。目前,尚无预测水华的方法。
发病,使公众容易受到一系列可能可以避免的有害毒素的侵害。
共享生态系统和共同进化的悠久历史在不同物种之间建立了密切的关系
形成 HAB 的浮游植物及其微生物组已被证明对光合作用有反应。
藻类的昼夜节律,模仿代谢必需蛋白质表达的昼夜节律模式。
生态系统的重大变化可能会导致蛋白质表达模式发生反应性变化,
可检测为具有相似分类起源或功能类别的单个肽或肽组。
如果在 HAB 开始前 24 小时以上,某个肽或一组肽的既定昼夜节律丢失,
它可以用作预测即将发生的水华毒性的指标。
HAB 相关微生物组的表达肽将使我能够检测节律性和丢失
这些肽的节律性;这些肽或肽组可以作为生物标志物
开发为生物测定法或探针,用于预测有害细菌,以更好地警告公众。
对于这个项目,我将收集已知周围微生物群的时间依赖性水样本
形成 HAB 的浮游植物拟菱形藻每年两次在华盛顿州普吉特海湾进行 我的实验设计包括。
与华盛顿声音毒素计划合作对浮游植物进行高分辨率采样
从预测的水华事件前 2 周开始每 4 小时采集一次微生物组,并进行采样,直至检测到 HAB 毒素
然后,我将使用与数据无关的定量采集质量来分析微生物组样本。
确定时间依赖性肽丰度的光谱测定方法将对这些肽进行分组和分析。
使用 MetaGOmics 和时间过程数据注释到所有潜在的分类和功能组中
使用结合非参数方法的节律性分析进行分析这将使我能够检测到。
开花前单个肽 (AIM 1) 和按类群或功能分组的肽 (AIM 2) 的节律性
在开花开始之前表现出节律性显着变化或丧失的肽或肽组。
未来开发快速分子肽检测或探针的潜在生物标志物
该项目利用宏蛋白质组学方法的进步来预测有害人类。
通过使用微生物组生物标志物肽组预测水华爆发来确定暴露于 HAB 毒素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miranda Mudge其他文献
Miranda Mudge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miranda Mudge', 18)}}的其他基金
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10459284 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10689674 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
相似国自然基金
富营养湖泊水体表面藻斑水平漂移与藻类水华暴发的动力驱动机制
- 批准号:32371648
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于藻华暴发过程影响的湖泊中砷迁移转化及驱动机制
- 批准号:41907335
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
流量坦化河段着生藻“水华”水流调控因子研究
- 批准号:51879279
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于射流泵式空化发生器的水华藻类的灭杀机理研究
- 批准号:51679169
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
群体感应信号介导的菌群行为对藻类生消的调节
- 批准号:41476092
- 批准年份:2014
- 资助金额:78.0 万元
- 项目类别:面上项目
相似海外基金
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10459284 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10689674 - 财政年份:2021
- 资助金额:
$ 4.08万 - 项目类别:
The synergistic effects of climate and anthropogenic drivers on toxic cyanobacterial blooms
气候和人为驱动因素对有毒蓝藻水华的协同影响
- 批准号:
10427315 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
The synergistic effects of climate and anthropogenic drivers on toxic cyanobacterial blooms
气候和人为驱动因素对有毒蓝藻水华的协同影响
- 批准号:
9976540 - 财政年份:2018
- 资助金额:
$ 4.08万 - 项目类别:
The synergistic effects of climate and anthropogenic drivers on toxic cyanobacterial blooms
气候和人为驱动因素对有毒蓝藻水华的协同影响
- 批准号:
9789304 - 财政年份:
- 资助金额:
$ 4.08万 - 项目类别: