Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues

使用染色组织的定量相位成像进行癌症预后的定量组织病理学

基本信息

项目摘要

Project Summary About 1 in 8 U.S. women will develop invasive breast cancer over the course of her lifetime. Early diagnosis and prognosis are key to improving health outcomes. Prognostic markers in tissue biopsies help clinicians make treatment decisions and refine the patient risk stratification. New research expands the current prognostic markers to better deliver personalized treatment regimens. However, the variability of preanalytical factors (biopsy collection, processing and storage) can have a significant impact on biomarkers evaluation which can result in potentially serious consequences in terms of patient care. There is an identified need for developing clinically relevant biomarkers that are invariant to biospecimen preparation. This project proposes a technical solution to extracting intrinsic tissue morphology information, unaffected by variability in tissue staining, slice thickness, or sectioning errors. Spatial Light Interference Microscopy (SLIM) was shown to provide prognostic markers derived from tumor microenvironment using nanoscale organization of the non-malignant tissue adjacent to cancer cells, i.e., the stromal response to cancer. Preliminary results indicate that SLIM can distinguish between pairs of “matched” patients (good vs. bad outcome) and has the capability to eliminate false positives and help the clinician assign the appropriate treatment. For this project, we will validate color SLIM (cSLIM) capabilities as a prognostic tool for existing, stained histopathology slides. cSLIM will render simultaneously bright field and quantitative phase images, in a single scan. cSLIM will be implemented in a whole slide imaging (WSI) instrument with the color bright field image familiar to pathologists, while maintaining a stain-independent signal, which has intact prognosis value. The WSI instrument’s high sensitivity to stroma and collagen fibers will be used to develop robust markers for breast prognosis, which are independent of tissue slice thickness, color variability within the same stain type (say, H & E), and across stains (H & E, various immunochemical stains, etc). With this new instrument, we will test the staining-invariance performance on 196 TMA cases and validate with 300 biopsies. The work is the results of combining expertise in imaging, pathology, and image processing across four sites: UIUC Beckman Institute, the Mills Breast Cancer Institute in Urbana, UIC Pathology, and U. Wisconsin.
项目概要 大约八分之一的美国女性在一生中会患上浸润性乳腺癌。早期诊断。 和预后是改善健康结果的关键组织活检中的预后标志物有帮助。 做出治疗决策并完善患者风险分层。新研究扩展了当前的研究范围。 预后标志物可以更好地提供个性化治疗方案然而,分析前的可变性。 因素(活检采集、处理和储存)可能对生物标志物评估产生重大影响 这可能会在患者护理方面造成潜在的严重后果。 开发与生物样本制备无关的临床相关生物标志物。 该项目提出了一种提取内在组织形态信息的技术解决方案,不受 组织染色、切片厚度或切片误差的变化。 (SLIM)被证明可以提供源自肿瘤微环境的预后标志物 与癌细胞相邻的非恶性组织的纳米级组织,即基质对癌细胞的反应 初步结果表明,SLIM 可以区分“匹配”的患者(良好与不匹配)。 不良结果),并有能力消除误报并帮助临床医生分配适当的 治疗。 对于这个项目,我们将验证颜色 SLIM (cSLIM) 功能作为现有、 染色的组织病理学载玻片将同时呈现明场和定量相。 单次扫描中的图像将在带有颜色的全幻灯片成像 (WSI) 仪器中实现。 病理学家熟悉的明场图像,同时保持与染色无关的信号,该信号具有完整的 WSI 仪器对基质和胶原纤维的高敏感性将用于开发预后价值。 乳房预后的强大标记,与组织切片厚度、组织内颜色变化无关 相同的染色类型(例如,H 和 E),以及跨染色(H 和 E、各种免疫化学染色等)。 仪器,我们将在 196 个 TMA 案例上测试染色不变性性能,并用 300 个案例进行验证 这项工作是结合成像、病理学和图像处理方面的专业知识的结果。 四个研究中心:UIUC 贝克曼研究所、厄巴纳米尔斯乳腺癌研究所、UIC 病理学和 U. 威斯康星州。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark A Anastasio其他文献

Mark A Anastasio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark A Anastasio', 18)}}的其他基金

Deep learning technologies for estimating the optimal task performance of medical imaging systems
用于评估医学成像系统最佳任务性能的深度学习技术
  • 批准号:
    10635347
  • 财政年份:
    2023
  • 资助金额:
    $ 51.6万
  • 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
  • 批准号:
    10367731
  • 财政年份:
    2022
  • 资助金额:
    $ 51.6万
  • 项目类别:
Computational imaging and intelligent specificity (Anastasio)
计算成像和智能特异性(Anastasio)
  • 批准号:
    10705173
  • 财政年份:
    2022
  • 资助金额:
    $ 51.6万
  • 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
  • 批准号:
    10665540
  • 财政年份:
    2022
  • 资助金额:
    $ 51.6万
  • 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
  • 批准号:
    10017970
  • 财政年份:
    2019
  • 资助金额:
    $ 51.6万
  • 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
  • 批准号:
    9888370
  • 财政年份:
    2019
  • 资助金额:
    $ 51.6万
  • 项目类别:
Quantitative histopathology for cancer prognosis using quantitative phase imaging on stained tissues
使用染色组织的定量相位成像进行癌症预后的定量组织病理学
  • 批准号:
    10703212
  • 财政年份:
    2019
  • 资助金额:
    $ 51.6万
  • 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
  • 批准号:
    10252852
  • 财政年份:
    2019
  • 资助金额:
    $ 51.6万
  • 项目类别:
Advanced image reconstruction for accurate and high-resolution breast ultrasound tomography
先进的图像重建,可实现精确、高分辨率的乳腺超声断层扫描
  • 批准号:
    10442593
  • 财政年份:
    2019
  • 资助金额:
    $ 51.6万
  • 项目类别:
Development of a Rapid Method for Imaging Regional Ventilation in Small Animals w/o Contrast Agents
开发一种无需造影剂的小动物局部通气成像快速方法
  • 批准号:
    9927856
  • 财政年份:
    2019
  • 资助金额:
    $ 51.6万
  • 项目类别:

相似国自然基金

“共享建筑学”的时空要素及表达体系研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
  • 批准号:
    51778419
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
宜居环境的整体建筑学研究
  • 批准号:
    51278108
  • 批准年份:
    2012
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
  • 批准号:
    20801051
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 51.6万
  • 项目类别:
Genomics of OCD in Latin American Communities
拉丁美洲社区强迫症的基因组学
  • 批准号:
    10591747
  • 财政年份:
    2023
  • 资助金额:
    $ 51.6万
  • 项目类别:
Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
  • 批准号:
    10660098
  • 财政年份:
    2023
  • 资助金额:
    $ 51.6万
  • 项目类别:
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
  • 批准号:
    10561108
  • 财政年份:
    2023
  • 资助金额:
    $ 51.6万
  • 项目类别:
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
  • 批准号:
    10817272
  • 财政年份:
    2023
  • 资助金额:
    $ 51.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了