Project 1
项目1
基本信息
- 批准号:10443847
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-25 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAnimal ModelAutomobile DrivingBehaviorBrainCell ProliferationCellsClinical TrialsCollaborationsCoupledDataDefectDevelopmentDiseaseDown-RegulationEmbryoFMR1FailureFragile X SyndromeGenetic TranslationHippocampus (Brain)HumanImpairmentJointsLentivirusMediatingMessenger RNAModelingMolecularMolecular TargetMorphologyMusNeuronal DifferentiationNeuronsNuclear Pore ComplexOrganoidsOutcomePathway interactionsPatientsPhenotypePhysiologicalProtein BiosynthesisProteinsRNARegulationReportingRetinoic Acid-Binding ProteinsRoleSignal TransductionSynapsesSynaptic plasticitySystemTestingTherapeuticTherapeutic InterventionTissuesTranslationsWorkbasecell typecomparativecrosslinking and immunoprecipitation sequencingdrug efficacyeffective therapyexperimental studyfetalinduced pluripotent stem cellinsightmigrationmonolayermouse modelneural modelneurodevelopmentneurogenesisneuron developmentneuronal excitabilityneurophysiologyneurotransmissionnovelpreclinical studyprimary endpointrelating to nervous systemribosome profilingsingle-cell RNA sequencingsmall moleculesynergismthree-dimensional modelingtool developmenttranscriptome sequencingtranslatome
项目摘要
Project Summary
Previous work in animal models of fragile X syndrome (FXS) has provided invaluable insight into the normal
molecular, cellular, and physiological functions of fragile X mental retardation protein (FMRP); however, an
effective treatment remains elusive. Although these failures could be attributed to several factors, it is now
apparent that it is imperative that FXS-associated phenotypes, the efficacy of drugs, and rescue strategies
characterized in animal models of FXS be validated and/or new phenotypes characterized in human FXS patient-
derived, disease-relevant cell types. A critical limitation is lack of an available human FXS patient-derived neural
model to investigate the role of FMRP-mediated regulation of protein synthesis and signaling. We have recently
developed multiple human iPSC-derived 2D neural and 3D cortical organoid models to investigate the role of
FMRP-mediated regulation of protein synthesis and signaling during brain development. The objectives of
Project 1 are to use these FXS patient iPSC-derived 2D monolayers as well as 3D cortical and hippocampal
organoids to address questions delineated in three specific aims. Aim 1 is to characterize protein synthesis
dysregulation and associated molecular, cellular and neurophysiological phenotypes in specific cell types across
neural development in human FXS iPSC neural models. Our preliminary data indicate that FXS patient cells
have increased protein synthesis rates, increased proliferation and altered migration, resulting in delayed
acquisition of cell fate and neuronal differentiation. These early neurodevelopmental defects are anticipated to
have consequences on neuronal development and function. Aim 2 is to identify FMRP targets and translationally
dysregulated mRNAs during brain development in multiple human FXS iPSC neural models. Using CLIP-seq we
have identified FMRP target mRNAs in both human cortical organoids and mouse embryonic cortex at similar
developmental stages. Our comparative analyses have revealed three groups of FMRP mRNA targets, human
only, mouse only and shared ones. We have also recently used ribosome profiling to identify translationally
dysregulated mRNAs, some of which are FMRP targets, in whole cortex in the adult mouse brain. Thus, ribosome
profiling will be applied to characterize the translatomes of FXS patients and controls using both isogenic
i3Neurons and i3Neurons from multiple patients, as well as from isogenic 3D cortical organoids. For comparison
between FXS models, we also will conduct ribosome profiling of FXS mouse embryonic cortex. In Aim 3, we will
devise targeted strategies to rescue cellular and synaptic phenotypes in human FXS iPSC neural models. We
will manipulate expression of dysregulated FMRP targets using lentivirus-based approaches to rescue FXS-
associated cellular and synaptic phenotypes. The outcome of the experiments in this Project, coupled with
synergy with the other projects, will uncover novel mechanisms and key drivers of FXS-associated phenotypes
in cortical development using our newly generated human iPSC-derived 2D and 3D neural models.
项目概要
先前对脆性 X 综合征 (FXS) 动物模型的研究为了解正常情况提供了宝贵的见解。
脆性 X 智力低下蛋白 (FMRP) 的分子、细胞和生理功能;然而,一个
有效的治疗仍然难以捉摸。尽管这些失败可能归因于多种因素,但现在
显然,FXS 相关表型、药物疗效和救援策略势在必行
在 FXS 动物模型中进行表征和/或在人类 FXS 患者中表征新表型
衍生的、与疾病相关的细胞类型。一个关键的限制是缺乏可用的人类 FXS 患者衍生的神经网络
模型研究 FMRP 介导的蛋白质合成和信号传导调节的作用。我们最近有
开发了多个人类 iPSC 衍生的 2D 神经和 3D 皮质类器官模型来研究
FMRP 介导的大脑发育过程中蛋白质合成和信号传导的调节。的目标
项目 1 将使用这些 FXS 患者 iPSC 衍生的 2D 单层以及 3D 皮质和海马
类器官来解决三个具体目标所描述的问题。目标 1 是表征蛋白质合成
特定细胞类型中的失调和相关的分子、细胞和神经生理表型
人类 FXS iPSC 神经模型中的神经发育。我们的初步数据表明 FXS 患者细胞
增加了蛋白质合成率,增加了增殖并改变了迁移,导致延迟
获得细胞命运和神经元分化。这些早期神经发育缺陷预计会
对神经元的发育和功能产生影响。目标 2 是确定 FMRP 目标并转化为
在多个人类 FXS iPSC 神经模型中,大脑发育过程中 mRNA 失调。使用 CLIP-seq 我们
已经在人类皮质类器官和小鼠胚胎皮质中以相似的速度鉴定了 FMRP 目标 mRNA。
发展阶段。我们的比较分析揭示了三组 FMRP mRNA 靶标:人类
仅、仅鼠标和共享。我们最近还使用核糖体分析来识别翻译
成年小鼠大脑整个皮质中失调的 mRNA,其中一些是 FMRP 靶标。因此,核糖体
分析将用于使用同基因组来表征 FXS 患者和对照的翻译组
来自多个患者以及同基因 3D 皮质类器官的 i3Neurons 和 i3Neurons。用于比较
在 FXS 模型之间,我们还将对 FXS 小鼠胚胎皮层进行核糖体分析。在目标 3 中,我们将
制定有针对性的策略来拯救人类 FXS iPSC 神经模型中的细胞和突触表型。我们
将使用基于慢病毒的方法操纵失调的 FMRP 靶标的表达来拯救 FXS-
相关的细胞和突触表型。该项目的实验结果,加上
与其他项目的协同作用,将揭示 FXS 相关表型的新机制和关键驱动因素
使用我们新生成的人类 iPSC 衍生的 2D 和 3D 神经模型进行皮质发育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY J BASSELL其他文献
GARY J BASSELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY J BASSELL', 18)}}的其他基金
Single-Molecule Imaging of Ubiquitination Dynamics in Neurons
神经元泛素化动力学的单分子成像
- 批准号:
10817362 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Dysregulated nascent proteome in human FX neuron
人类 FX 神经元新生蛋白质组失调
- 批准号:
10842046 - 财政年份:2020
- 资助金额:
$ 53.7万 - 项目类别:
Mechanism and Function Of MBNL Mediated mRNA Localization in Neuronal Development and Neurologic Disease
MBNL介导的mRNA定位在神经元发育和神经系统疾病中的机制和功能
- 批准号:
10553695 - 财政年份:2020
- 资助金额:
$ 53.7万 - 项目类别:
Mechanism and Function Of MBNL Mediated mRNA Localization in Neuronal Development and Neurologic Disease
MBNL介导的mRNA定位在神经元发育和神经系统疾病中的机制和功能
- 批准号:
10334425 - 财政年份:2020
- 资助金额:
$ 53.7万 - 项目类别:
RNA Processing-Mediated Mechanisms of CNS Dysfunction in Myotonic Dystrophy
强直性肌营养不良中 CNS 功能障碍的 RNA 加工介导机制
- 批准号:
10442192 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
RNA Processing-Mediated Mechanisms of CNS Dysfunction in Myotonic Dystrophy
强直性肌营养不良中 CNS 功能障碍的 RNA 加工介导机制
- 批准号:
10651422 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
RNA Processing-Mediated Mechanisms of CNS Dysfunction in Myotonic Dystrophy
强直性肌营养不良中 CNS 功能障碍的 RNA 加工介导机制
- 批准号:
10652533 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
RNA Processing-Mediated Mechanisms of CNS Dysfunction in Myotonic Dystrophy
强直性肌营养不良中 CNS 功能障碍的 RNA 加工介导机制
- 批准号:
10442192 - 财政年份:2019
- 资助金额:
$ 53.7万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 53.7万 - 项目类别:
A Gene-Network Discovery Approach to Structural Brain Disorders
结构性脑疾病的基因网络发现方法
- 批准号:
10734863 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Examining the Role of Social Connection in Suicide Risk for Older Autistic Adults: A Mixed Methods Study
检查社会联系在老年自闭症成人自杀风险中的作用:一项混合方法研究
- 批准号:
10727637 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别: