RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
基本信息
- 批准号:10297432
- 负责人:
- 金额:$ 38.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBioinformaticsBreast Cancer CellBreast Cancer PreventionBreast Cancer TreatmentBreast Cancer cell lineBreast Epithelial CellsCXCL10 geneCatalytic DomainCell DeathCell SurvivalCell modelCellsCharacteristicsChemicalsCombination immunotherapyCombined Modality TherapyDNA DamageDNA biosynthesisDiseaseEnzymesExcisionExhibitsGeneticGenomeGenomic InstabilityGenomicsGoalsImmunityImmunotherapyIn VitroKnowledgeMaximum Tolerated DoseMediatingMusNaturePathway interactionsPatient-derived xenograft models of breast cancerPatientsProteinsRANTESRecurrenceReplication-Associated ProcessResistanceRibonucleasesRibonucleotidesRoleSignal TransductionSmall Interfering RNAStimulator of Interferon GenesT-LymphocyteTestingTherapeuticTherapeutic EffectToxic effectTreatment EfficacyXenograft Modelanti-PD-1anti-PD1 therapybasecancer subtypeschemotherapycytokineefficacy evaluationfollow-upimmune checkpointimmune checkpoint blockadein vivoin vivo Modelinhibitor/antagonistinnovationmouse modelnew therapeutic targetnoveloverexpressionprogrammed cell death ligand 1programmed cell death protein 1replication stressresponsetherapeutically effectivetriple-negative invasive breast carcinomatripolyphosphatetumortumor growthtumor-immune system interactions
项目摘要
Project Summary
Due to their hyperproliferative nature and intrinsic genomic instability, triple-negative breast cancer (TNBC)
cells exhibit high levels of replication stress, which occurs when the DNA replication machinery encounters
obstacles that impede the replication process. How TNBC cells adapt to these high levels of replication stress
remains poorly understood. These adaptive mechanisms, if identified, would reveal specific targets in TNBC
and provide an effective strategy for TNBC treatment. To this end, we generated innovative cell models and
discovered that one major mechanism required for TNBC cells to survive high replication stress is an increase
in the enzyme RNase H2. RNase H2 acts to remove ribonucleotides that have been improperly incorporated
into the genome, a key driver of replication stress. Subsequent bioinformatic analysis revealed that
RNASEH2A, the catalytic subunit of RNase H2, is overexpressed in 89% of TNBC tumors and all the TNBC
cell lines that we tested. More importantly, we found that RNase H2 inhibition, by genetic depletion or by the
chemical inhibitor R14, specifically kills TNBC cells both in vitro and in vivo with minimal effects on
nontumorigenic mammary epithelial cells. These important findings indicate that RNase H2 inhibition may be
a promising therapeutic strategy for TNBC treatment. Intriguingly, we also found that RNase H2 inhibition
activated the stimulator of interferon genes (STING) pathway and increased expression of key T-cell-attracting
cytokines in TNBC cells and sensitized mouse TNBC tumors to anti-PD-1 immunotherapy, suggesting that
the therapeutic effects of RNase H2 inhibition may be potentiated by anti-PD-1 therapy. All of these exciting
findings support the hypotheses that RNase H2 inhibition offers a promising therapeutic strategy to treat
TNBC and that it may be enhanced by anti-PD-1 immunotherapy. These hypotheses will be tested via 3
specific aims: (1) To identify the underlying mechanisms of the therapeutic efficacy of RNase H2 inhibition in
TNBC. We will determine if limiting levels of dNTPs leads to increased misincorporation of ribonucleotides
into the genomes of TNBC cells, and if inhibition of RNase H2 in TNBC prevents removal of these
misincorporated ribonucleotides, consequently leading to unsustainably high replication stress and cell death.
We will also evaluate the potential mechanisms mediating the escape of TNBC from RNase H2 inhibition and
strategies to overcome resistance. (2) To determine the therapeutic potential of R14 for TNBC treatment. We will
determine the in vivo tolerability of R14 in mice to determine the maximum tolerated dose as well as any potential
toxicities. We will then assess the efficacy of R14 treatment in 10 TNBC patient-derived xenograft models
representative of 5 TNBC subtypes. (3) To determine the therapeutic efficacy of the combination of RNase H2
inhibition with PD-1 immunotherapy in TNBC. We will evaluate the therapeutic efficacy of the R14/PD-1
immunotherapy combination in TNBC using 5 syngeneic TNBC mouse models. We will also assess if and how
R14-mediated therapies affect the tumor immune microenvironment.
项目概要
由于其过度增殖性质和内在基因组不稳定性,三阴性乳腺癌 (TNBC)
细胞表现出高水平的复制应激,当 DNA 复制机器遇到
阻碍复制过程的障碍。 TNBC 细胞如何适应这些高水平的复制压力
仍然知之甚少。这些适应性机制如果被发现,将揭示 TNBC 中的特定目标
为TNBC治疗提供有效策略。为此,我们生成了创新的细胞模型并
发现 TNBC 细胞在高复制压力下生存所需的一个主要机制是增加
在 RNase H2 酶中。 RNase H2 可去除不正确掺入的核糖核苷酸
进入基因组,这是复制压力的关键驱动因素。随后的生物信息学分析表明
RNASEH2A 是 RNase H2 的催化亚基,在 89% 的 TNBC 肿瘤和所有 TNBC 中过表达
我们测试的细胞系。更重要的是,我们发现 RNase H2 抑制可通过基因缺失或通过
化学抑制剂 R14,在体外和体内特异性杀死 TNBC 细胞,对
非致瘤性乳腺上皮细胞。这些重要的发现表明 RNase H2 抑制可能是
TNBC 治疗的一种有前景的治疗策略。有趣的是,我们还发现 RNase H2 抑制
激活干扰素基因刺激剂 (STING) 通路并增加关键 T 细胞吸引的表达
TNBC 细胞中的细胞因子并使小鼠 TNBC 肿瘤对抗 PD-1 免疫疗法敏感,这表明
抗 PD-1 疗法可能会增强 RNase H2 抑制的治疗效果。所有这些都令人兴奋
研究结果支持以下假设:RNase H2 抑制提供了一种有前途的治疗策略
TNBC 可能会通过抗 PD-1 免疫疗法得到增强。这些假设将通过 3
具体目标:(1) 确定 RNase H2 抑制治疗功效的潜在机制
TNBC。我们将确定 dNTP 的限制水平是否会导致核糖核苷酸的错误掺入增加
进入 TNBC 细胞的基因组,并且如果抑制 TNBC 中的 RNase H2 可以阻止这些细胞的去除
错误掺入核糖核苷酸,从而导致不可持续的高复制压力和细胞死亡。
我们还将评估介导 TNBC 逃脱 RNase H2 抑制的潜在机制,
克服阻力的策略。 (2) 确定R14用于TNBC治疗的治疗潜力。我们将
确定 R14 在小鼠体内的耐受性,以确定最大耐受剂量以及任何潜在剂量
毒性。然后我们将评估 R14 治疗在 10 个 TNBC 患者来源的异种移植模型中的疗效
5个TNBC亚型的代表。 (3) 确定RNase H2组合的治疗效果
TNBC 中 PD-1 免疫疗法的抑制作用。我们将评估R14/PD-1的治疗效果
使用 5 个同基因 TNBC 小鼠模型进行 TNBC 免疫治疗组合。我们还将评估是否以及如何
R14 介导的疗法影响肿瘤免疫微环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiaw-Yih Lin其他文献
Shiaw-Yih Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiaw-Yih Lin', 18)}}的其他基金
Replication stress response defects predict and enhance immune checkpoint therapy response in triple negative breast cancer
复制应激反应缺陷可预测并增强三阴性乳腺癌的免疫检查点治疗反应
- 批准号:
10556413 - 财政年份:2021
- 资助金额:
$ 38.41万 - 项目类别:
RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
- 批准号:
10658881 - 财政年份:2021
- 资助金额:
$ 38.41万 - 项目类别:
Replication stress response defects predict and enhance immune checkpoint therapy response in triple negative breast cancer
复制应激反应缺陷可预测并增强三阴性乳腺癌的免疫检查点治疗反应
- 批准号:
10330595 - 财政年份:2021
- 资助金额:
$ 38.41万 - 项目类别:
RNase H2 is a novel therapeutic target in triple negative breast cancer
RNase H2 是三阴性乳腺癌的新治疗靶点
- 批准号:
10437893 - 财政年份:2021
- 资助金额:
$ 38.41万 - 项目类别:
Replication stress response defects predict and enhance immune checkpoint therapy response in triple negative breast cancer
复制应激反应缺陷可预测并增强三阴性乳腺癌的免疫检查点治疗反应
- 批准号:
10117861 - 财政年份:2021
- 资助金额:
$ 38.41万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
9751230 - 财政年份:2017
- 资助金额:
$ 38.41万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
9361858 - 财政年份:2017
- 资助金额:
$ 38.41万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
9977136 - 财政年份:2017
- 资助金额:
$ 38.41万 - 项目类别:
Signature-guided therapy for mismatch repair defective cancers
特征引导治疗错配修复缺陷型癌症
- 批准号:
10215252 - 财政年份:2017
- 资助金额:
$ 38.41万 - 项目类别:
Characterizing and Targeting CHD4 Deficiency in Endometrial Cancer
子宫内膜癌中 CHD4 缺陷的特征和靶向治疗
- 批准号:
8610904 - 财政年份:2013
- 资助金额:
$ 38.41万 - 项目类别:
相似国自然基金
基于结构表征的蛋白质与长链非编码RNA相互作用预测的生物信息学方法研究
- 批准号:62373216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于生物信息学的类风湿性关节炎患者衰弱预测模型的构建与验证
- 批准号:82301786
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自身免疫性疾病精准诊疗中基于非编码RNA组学和生物信息学的新方法研究
- 批准号:82371855
- 批准年份:2023
- 资助金额:74 万元
- 项目类别:面上项目
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
- 批准号:32300528
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
突变和修饰重塑蛋白质亚细胞定位的生物信息学研究
- 批准号:32370698
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
- 批准号:
10762157 - 财政年份:2023
- 资助金额:
$ 38.41万 - 项目类别:
Research Project 2 Proteogenomic-guided therapeutic targeting of breast cancer patient-derived xenograft metastases
研究项目 2 蛋白质基因组引导的乳腺癌患者异种移植转移的治疗靶向
- 批准号:
10733315 - 财政年份:2023
- 资助金额:
$ 38.41万 - 项目类别:
Personalized, antigen-directed immunotherapy delivered to lymph nodes
递送至淋巴结的个性化抗原导向免疫疗法
- 批准号:
10744599 - 财政年份:2023
- 资助金额:
$ 38.41万 - 项目类别:
Mechanical properties of adipose tissue and its effect on breast cancer
脂肪组织的力学特性及其对乳腺癌的影响
- 批准号:
10737165 - 财政年份:2023
- 资助金额:
$ 38.41万 - 项目类别:
Metabolic modulation of Fusobacterium nucleatum virulence
具核梭杆菌毒力的代谢调节
- 批准号:
10681729 - 财政年份:2023
- 资助金额:
$ 38.41万 - 项目类别: