Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
基本信息
- 批准号:10228618
- 负责人:
- 金额:$ 44.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2023-05-21
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBindingCenters for Disease Control and Prevention (U.S.)Cessation of lifeCharacteristicsClinicClinicalCollaborationsDefectDevelopmentDirected Molecular EvolutionDominant-Negative MutationEnzymesEvolutionFamilyGeneticGenetic TranscriptionHealthHumanHypermethylationImpairmentInfectionInfection preventionInstitutesKnowledgeLaboratoriesMethylationMicrobeModificationMolecularMulti-Drug ResistanceMutationNucleotidesOxazolidinonesPeptidyltransferasePhenotypePhysiologicalPositioning AttributePredispositionProkaryotic CellsProtein BiosynthesisRNA, Ribosomal, 23SRegulationResistanceResistance developmentRibosomal RNARibosomesRoleSiteStreptograminsTestingTranslation ProcessTranslational RegulationTranslationsTreatment FailureVancomycin resistant enterococcusVariantWorkantibiotic resistant infectionsbacterial fitnessdiagnostic platformdrug resistant pathogenexperimental studyfitnessimprovedlincosamidemembermethicillin resistant Staphylococcus aureuspathogenpathogenic bacteriapathogenic microbepleuromutilinpreventpublic health relevanceresistance mechanismresistant strain
项目摘要
PROJECT SUMMARY
The increasing occurrence of antibiotic resistant infections is a major threat to human health, necessitating
understanding of mechanisms that confer resistance and development of strategies to counteract them.
Antibiotics that bind to the peptidyltransferase center (PTC) of the bacterial ribosome interfere with protein
synthesis in bacteria. However, some bacterial strains can modify the PTC region through mutations and post-
transcriptional modifications of ribosomal RNA (rRNA), resulting in a ribosome that can no longer bind antibiotics.
The multi-drug resistance enzyme Cfr, a member of radical SAM enzyme family, catalyzes methylation of 23S
rRNA in the PTC region. This enzyme confers resistance to a number of antibiotics, such as phenicols,
lincosamides, oxazolidinones, pleuromutilins, and streptogramin A. The ability of Cfr to confer resistance to
linezolide, an oxazolidinone antibiotic, is particularly worrisome as this antibiotic is used for the treatment of drug-
resistant pathogens including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci
(VRE). In pathogens, Cfr methylates adenosine A2503 at the C8 position. Interestingly, A2503 is also methylated
at its C2 position by RlmN, a radical SAM enzyme that is highly conserved is prokaryotes. C2 A2503 methylation
is implicated in the regulation of translational accuracy of the ribosome. A loss of physiological RlmN methylation,
both in laboratory selection experiments and in clinical settings, causes antibiotic resistance. These findings
suggest that aberrant A2503 methylation – both the absence of physiological methylation caused by inactivation
of RlmN and the hypermethylation caused by acquisition of Cfr – profoundly impacts susceptibility of the bacterial
ribosome to antibiotics.
In this application, we will investigate how aberrant methylation of A2503 in 23S rRNA impacts antibiotic
resistance and bacterial fitness. Using directed evolution and antibiotic selection, we have evolved variants of
RlmN that prevent A2503 methylation and confer resistance to tiamulin. We will determine the molecular basis
of the dominant negative effect of RlmN variants. Furthermore, we will investigate how the lack of C2 methylation
of A2503 in ribosomes confers antibiotic resistance. Cfr variants, obtained by laboratory evolution or isolated
from clinical antibiotic resistant strains, will be used to determine how changes in the sequence of this enzyme
modulate methylation of A2503 and how these changes in methylation alter antibiotic susceptibility. We will
further assess the impact of aberrant methylation on bacterial fitness and evaluate how changes in methylation
influence the regulation of translation. Our work will define how radical SAM-dependent methylation of the PTC
regulates the function of the ribosome and modulates its antibiotic susceptibility.
项目概要
抗生素耐药性感染的日益增多是对人类健康的主要威胁,因此需要
了解产生阻力的机制并制定应对策略。
与细菌核糖体肽基转移酶中心 (PTC) 结合的抗生素会干扰蛋白质
然而,一些细菌菌株可以通过突变和后处理来改变 PTC 区域。
核糖体 RNA (rRNA) 的转录修饰,导致核糖体不再结合抗生素。
多重耐药酶 Cfr 是自由基 SAM 酶家族的成员,催化 23S 甲基化
PTC 区域的 rRNA 赋予酶对多种抗生素(如苯酚)的抗性。
林可酰胺类、恶唑烷酮类、截短侧耳素和链霉素 A。 Cfr 赋予耐药性的能力
利奈唑胺是一种恶唑烷酮类抗生素,尤其令人担忧,因为这种抗生素用于治疗药物-
耐药病原体,包括耐甲氧西林金黄色葡萄球菌 (MRSA) 和耐万古霉素肠球菌
(VRE) 在病原体中,Cfr 在 C8 位点使腺苷 A2503 甲基化。
在其 C2 位置被 RlmN(一种高度保守的自由基 SAM 酶)C2 A2503 甲基化。
与核糖体翻译准确性的调节有关。生理性 RlmN 甲基化的丧失,
在实验室选择实验和临床环境中,这些发现都会导致抗生素耐药性。
表明异常的 A2503 甲基化 – 失活引起的生理甲基化缺失
RlmN 和获得 Cfr 引起的高甲基化——深刻影响细菌的敏感性
核糖体到抗生素。
在此应用中,我们将研究 23S rRNA 中 A2503 的异常甲基化如何影响抗生素
利用定向进化和抗生素选择,我们进化出了不同的变体。
RlmN 阻止 A2503 甲基化并赋予泰妙菌素抗性,我们将确定其分子基础。
此外,我们将研究 C2 甲基化的缺乏是如何产生的。
核糖体中的 A2503 赋予抗生素抗性,通过实验室进化获得或分离。
来自临床抗生素耐药菌株,将用于确定这种酶的序列如何变化
调节 A2503 的甲基化以及这些甲基化的变化如何改变抗生素敏感性。
进一步评估异常甲基化对细菌适应性的影响,并评估甲基化的变化如何
我们的工作将定义 PTC 的 SAM 依赖性甲基化的彻底性。
调节核糖体的功能并调节其抗生素敏感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danica Galonic Fujimori其他文献
Danica Galonic Fujimori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danica Galonic Fujimori', 18)}}的其他基金
Development of Novel Antivirals Targeting Viral RNA Methylation
针对病毒 RNA 甲基化的新型抗病毒药物的开发
- 批准号:
10512630 - 财政年份:2022
- 资助金额:
$ 44.06万 - 项目类别:
Radical SAM-dependent methylation in antibiotic resistance
抗生素耐药性中自由基 SAM 依赖性甲基化
- 批准号:
10736491 - 财政年份:2018
- 资助金额:
$ 44.06万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9330881 - 财政年份:2015
- 资助金额:
$ 44.06万 - 项目类别:
Allosteric Regulation in the KDM5 Family of Histone Demethylases
组蛋白去甲基酶 KDM5 家族的变构调节
- 批准号:
9037534 - 财政年份:2015
- 资助金额:
$ 44.06万 - 项目类别:
SYNTHESIS OF SMALL MOLECULES TO PROBE ENZYMATIC FUNCTION
合成小分子来探测酶功能
- 批准号:
8363795 - 财政年份:2011
- 资助金额:
$ 44.06万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
DNA甲基化对选择性多聚腺苷酸化的影响及在肝癌复发中的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Modular Reagents for Programmable RNA Manipulation by Endogenous Proteins
用于内源蛋白可编程 RNA 操作的模块化试剂
- 批准号:
10605050 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
ADA2 Diagnostic Platform: Point-of-care test for determination of patient enzyme levels for diagnosis of the rare disease Deaminase2 Deficiency (DADA2)
ADA2 诊断平台:用于测定患者酶水平的即时检测,以诊断罕见疾病脱氨酶 2 缺乏症 (DADA2)
- 批准号:
10698520 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Receptor-mediated dysfunction of satellite glia and uninjured sensory neurons as a novel link between referred neuropathic pain and bladder disease
卫星胶质细胞和未损伤感觉神经元受体介导的功能障碍是牵涉性神经性疼痛和膀胱疾病之间的新联系
- 批准号:
10602919 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别: