Structure, regulation, and evolution of the splicing machinery
熔接机械的结构、调节和演变
基本信息
- 批准号:10406517
- 负责人:
- 金额:$ 51.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlternative SplicingAntibioticsAreaAwarenessBacteriaBasic ScienceBiochemicalCandidate Disease GeneCell physiologyCellsComplexDefectDiseaseDrosophila genusEngineeringEukaryotaEvolutionFruitGene Expression RegulationGene ProteinsGenesGenetic TranscriptionHealthHumanIndividualInterventionIntronsInvestigationKnowledgeLethal GenesMalignant NeoplasmsMeasuresMediatingMutationNatureNoiseOutputPathway interactionsProcessRNA Polymerase IIRNA SplicingRNA-Binding ProteinsReactionRecurrent Malignant NeoplasmRegulationReporterRoleSiteSpinal Muscular AtrophySpliceosome Assembly PathwaySpliceosomesStructureSystemTestingTimeTranslatingU2 Small Nuclear RibonucleoproteinVariantWorkYeastsbasecell growthexperimental studyimprovedin vivoinnovationmRNA Precursornovelnovel strategiespredictive modelingrepairedsexsuccesssynthetic biologytranscriptome sequencingtumor progression
项目摘要
PROJECT SUMMARY
The complexity of human splicing is daunting, yet intervention in splicing for treatment of diseases holds
huge potential. Based on strong preliminary results, we propose three areas of investigation that leverage our
group’s deep knowledge of splicing to address critical open questions, and to explore the potential for innovative
engineering. The first area addresses the mechanism by which U2 snRNP captures the intron branchpoint
early in spliceosome assembly, a step altered by recurrent cancer mutations and targeted in nature by
antibiotic-producing bacteria. Using new reporters in which two branchpoints compete for recognition, we have
identified a novel splicing fidelity mechanism we call “NO-BP decay,” in which U2 complexes that fail due to
aberrant branchpoint selection are destroyed. We will characterize this process, applying a battery of candidate
gene-based suppressor screens and biochemical tests in splicing extracts. The second area of investigation
addresses how splicing is integrated with transcription and cell growth at the individual gene and cellular
levels, an emerging area in need of innovation if splicing is to be successfully engineered. Preliminary results
indicate that yeast cells have a limited capacity for splicing that creates competition for pre-mRNAs that is critical
to cell function. We will measure both splicing capacity and the dynamics of competition, using RNA sequencing
to develop a predictive model that explains how splicing is coordinated at a systems level. To understand the
contribution of individual genes to this system we are applying synthetic biology approaches. We have
engineered site-specific pauses of RNA polymerase II and shown that they alter splicing efficiency and
alternative splicing, by unknown mechanism(s) that we will dissect. We will also explore in detail the role of
splicing noise (stochastic variations in splicing output over time) on the ability of splicing to control stable
homeostatic expression settings (as it does in many RNA binding protein genes) as well as to control a bistable
switch (as it does in the Drosophila Sex lethal gene). These experiments will define the operational principles of
simple splicing regulatory circuits. The third area of investigation is focused on the process of intron gain
and its roles in eukaryotic gene creation and gene diversification. Our recent discovery that the spliceosome
can convert the lariat intron to a true intron circle after splicing indicates that it can carry out reverse splicing
reactions in vivo, raising questions about whether and how it might promote formation of new introns. We
propose to test biochemical steps predicted to be necessary for spliceosome-mediated intron gain, and have
already set up experiments to document intron gain in vivo. Given the fundamental conservation of the splicing
machinery, this work promises to translate directly into new understanding of the mechanisms of gene regulation
in eukaryotes, including humans. Defects in splicing are frequently recognized as contributors to disease, and
interventions that address splicing defects are increasingly successful pathways to treatment.
项目概要
人类剪接的复杂性令人望而生畏,但干预剪接以治疗疾病仍然有效
基于巨大的潜力,我们提出了三个利用我们的研究领域的研究。
小组对拼接的深入了解,以解决关键的开放性问题,并探索创新的潜力
第一个领域涉及 U2 snRNP 捕获内含子分支点的机制。
剪接体组装的早期,这是复发性癌症突变的一步,并且具有自然靶向性
使用两个分支点竞争识别的新生产者,我们有
确定了一种新的剪接保真度机制,我们称之为“NO-BP 衰减”,其中 U2 复合物由于以下原因而失败
我们将通过应用一系列候选点来描述这个过程。
剪接提取物中基于基因的抑制筛选和生化测试第二个研究领域。
解决剪接如何与个体基因和细胞的转录和细胞生长整合
如果要成功设计剪接的初步结果,这是一个需要创新的新兴领域。
表明酵母细胞的剪接能力有限,这会产生对前 mRNA 的竞争,这一点至关重要
我们将使用 RNA 测序来测量剪接能力和竞争动态。
开发一个预测模型来解释拼接如何在系统级别进行协调。
单个基因对该系统的贡献我们正在应用合成生物学方法。
设计了 RNA 聚合酶 II 的位点特异性暂停,并表明它们改变了剪接效率
选择性剪接,通过我们将剖析的未知机制,我们还将详细探讨其作用。
拼接噪声(拼接输出随时间的随机变化)对拼接控制稳定能力的影响
稳态表达设置(正如许多 RNA 结合蛋白基因中所做的那样)以及控制双稳态
开关(如果蝇性致死基因中的作用)。这些实验将定义开关的操作原理。
简单的剪接调控电路的第三个研究领域集中于内含子增益的过程。
及其在真核基因创建和基因多样化中的作用。我们最近发现剪接体。
剪接后能将套索内含子转化为真正的内含子环,表明其可以进行反向剪接
体内反应,引发了关于它是否以及如何促进新内含子形成的问题。
测试预计剪接体介导的内含子增益所必需的生化步骤,并已
考虑到剪接的基本保守性,已经建立了记录内含子增益的实验。
机器,这项工作有望直接转化为对基因调控机制的新理解
在真核生物中,包括人类,剪接缺陷经常被认为是导致疾病的因素,并且
解决剪接缺陷的干扰是越来越成功的治疗途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Ares其他文献
Manuel Ares的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Ares', 18)}}的其他基金
Structure, regulation, and evolution of the splicing machinery
熔接机械的结构、调节和演变
- 批准号:
10622605 - 财政年份:2022
- 资助金额:
$ 51.89万 - 项目类别:
STRUCTURE/FUNCTION OF EUKARYOTIC RNASE III
真核 RNA 酶 III 的结构/功能
- 批准号:
2910298 - 财政年份:1997
- 资助金额:
$ 51.89万 - 项目类别:
STRUCTURE/FUNCTION OF EUKARYOTIC RNASE III
真核 RNA 酶 III 的结构/功能
- 批准号:
2701806 - 财政年份:1997
- 资助金额:
$ 51.89万 - 项目类别:
STRUCTURE/FUNCTION OF EUKARYOTIC RNASE III
真核 RNA 酶 III 的结构/功能
- 批准号:
2024112 - 财政年份:1997
- 资助金额:
$ 51.89万 - 项目类别:
MOLECULAR AND BIOINFORMATIC IDENTIFICATION AND MAPPING
分子和生物信息学识别和绘图
- 批准号:
2630784 - 财政年份:1997
- 资助金额:
$ 51.89万 - 项目类别:
MOLECULAR AND BIOINFORMATIC IDENTIFICATION AND MAPPING
分子和生物信息学识别和绘图
- 批准号:
2749001 - 财政年份:1997
- 资助金额:
$ 51.89万 - 项目类别:
STRUCTURE AND FUNCTION OF YEAST SMALL NUCLEAR RNPS
酵母小核RNPS的结构和功能
- 批准号:
3072923 - 财政年份:1989
- 资助金额:
$ 51.89万 - 项目类别:
相似国自然基金
TRIM25介导的泛素化及ISGylation通过选择性剪接和糖代谢调控髓细胞分化
- 批准号:82370111
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
ac4C乙酰化修饰的HnRNP L选择性剪接EIF4G1调控糖代谢重编程介导前列腺癌免疫检查点阻断治疗无应答的机制研究
- 批准号:82303784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRMT5选择性剪接异构体通过甲基化PDCD4调控肝癌辐射敏感性的机制研究
- 批准号:82304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GSE1选择性剪接激活PI3K/Akt通路调控脂质代谢影响衰老进程的机制研究
- 批准号:82360286
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
由CathepsinH介导的YAP选择性剪接在辐射诱导细胞死亡及辐射敏感性中的作用
- 批准号:82373527
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Structure, regulation, and evolution of the splicing machinery
熔接机械的结构、调节和演变
- 批准号:
10622605 - 财政年份:2022
- 资助金额:
$ 51.89万 - 项目类别:
Mechanisms and Therapeutic Options of Hypersomnia in Myotonic Dystrophy
强直性肌营养不良的嗜睡机制和治疗选择
- 批准号:
9977456 - 财政年份:2020
- 资助金额:
$ 51.89万 - 项目类别:
Mechanistic investigation of RNA-mediated gene regulation and immunity
RNA介导的基因调控和免疫的机制研究
- 批准号:
9894980 - 财政年份:2016
- 资助金额:
$ 51.89万 - 项目类别:
Mechanistic investigation of RNA-mediated gene regulation and immunity
RNA介导的基因调控和免疫的机制研究
- 批准号:
9307882 - 财政年份:2016
- 资助金额:
$ 51.89万 - 项目类别:
Mechanistic investigation of RNA-mediated gene regulation and immunity
RNA介导的基因调控和免疫的机制研究
- 批准号:
9976558 - 财政年份:2016
- 资助金额:
$ 51.89万 - 项目类别: