Cellular Signaling in Drug Induced Toxicity
药物引起的毒性中的细胞信号转导
基本信息
- 批准号:10227081
- 负责人:
- 金额:$ 36.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Liver FailureAddressAdverse eventAnti-Retroviral AgentsAntiepileptic AgentsAntiviral AgentsApoptosisAreaBIM Bcl-2-binding proteinBiological AssayCRISPR/Cas technologyCarbamazepineCell DeathCellsCellular StressCessation of lifeChemicalsClinicalClinical DataClinical MarkersComplexCyclic AMP-Dependent Protein KinasesDataDiclofenacEndoribonucleasesEnzymesEventFoundationsGenesGeneticGenetic TranscriptionGenetic VariationGenomic DNAGenotypeGoalsHepaticHepatocyteHepatotoxicityHistologyHumanImageIndividualInositolKnockout MiceKnowledgeLeadLifeLiverMAPK8 geneMass Spectrum AnalysisMeasuresMediatingMediator of activation proteinMedicineMindMitochondriaModelingMolecularMusMutagenesisNon-Steroidal Anti-Inflammatory AgentsPathogenesisPatientsPharmaceutical PreparationsPlayPreventionProcessProtein KinaseProteinsRegulationReporter GenesReportingResistanceRoleSeveritiesSignal PathwaySignal TransductionSignaling MoleculeSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStimulusStructure-Activity RelationshipSystemTRAF2 geneTestingTherapeuticToxic effectUnited StatesUp-RegulationWithdrawalWorkWorld Health Organizationanalogdrug developmentdrug distributiondrug marketefavirenzgenetic variantinsightisoniazidknock-downliver injurypreventprototyperesponsesensorstress kinasetuberculosis drugs
项目摘要
Drug-induced hepatotoxicity is a leading cause of both the withdrawal of approved drugs from
the market and the attrition of new chemical entities during the drug development process;
however, the mechanisms underlying drug-induced hepatotoxicity are not fully understood. We
have used efavirenz, an antiretroviral drug that is hepatotoxic in certain patients, as a model
compound to investigate cellular signaling mechanisms that may play a causal role in drug-
induced hepatocyte death. Previously, using primary human hepatocytes, we demonstrated that
efavirenz and the major oxidative metabolite of efavirenz, denoted as 8-hydroxyefavirenz (8-
OHefavirenz), stimulate cell death in a manner that is dependent upon activation of the stress
kinase c-Jun N-terminal kinase and upregulation of the proapoptotic protein BimEL (Bcl-2
interacting mediator of cell death extra long). Subsequently, we have reported that efavirenz can
also activate inositol requiring enzyme 1α (IRE1α), a key regulator of cell stress that lies upstream
of JNK and BimEL. The goal of this proposal is to determine the mechanism by which efavirenz
and 8-OHefavirenz activate BimEL and IRE1α, while also gaining a mechanistic understanding of
how genetic variation in IRE1α might impact efavirenz and 8-OHefavirenz-induced cell death.
Importantly, we will leverage the insights we have gained through using efavirenz as a model
compound and employ prototypic hepatotoxic drugs beyond efavirenz, namely carbamazepine,
diclofenac and isoniazid, in order to establish BimEL and IRE1α as central regulators of drug-
induced hepatotoxicity across a range of drug classes. The aims are as follows: (1) to test the
hypothesis that BimEL acts as an executioner of cell death in response to efavirenz and other
prototypic hepatotoxic drugs: BimEL null mice will be used to determine whether the absence of
BimEL prevents hepatotoxicity stimulated by the hepatotoxic drugs being investigated here;
CRISPR/Cas9 systems will be used to determine the role of effector proteins, Bax and Bak, that
are downstream of BimEL in modulating hepatocyte death; CRISPR/Cas9 and reporter gene
assays will be used to define the mechanism by which efavirenz, 8-OHefavirenz and other
hepatotoxic drugs regulate the transcription of BimEL; efavirenz analogs will be employed in order
to elucidate the structure-activity relationship of BimEL activation by efavirenz; (2) to test the
hypothesis that IRE1α is a central upstream regulator of drug-induced hepatotoxicity that is
stimulated by several classes of drugs: we will determine whether efavirenz, 8-OHefavirenz, and
other hepatotoxic drugs stimulate formation of the IRE1α/TRAF2/ASK1/JNK complex that results
in IRE1α-dependent activation of JNK; we will test the impact of naturally occurring genetic
variants of IRE1α on activity and cell death. It is expected that these studies will define BimEL
and IRE1α activation as important molecular mechanisms by which a range of drugs induce-
hepatotoxicity.
药物引起的肝毒性是批准药物撤回的主要原因
药物开发过程中新化学实体的市场和消耗;
然而,药物引起的肝毒性的机制尚不完全清楚。
使用依非韦伦(efavirenz)作为模型,依非韦伦是一种抗逆转录病毒药物,对某些患者具有肝毒性
化合物来研究可能在药物中发挥因果作用的细胞信号传导机制
此前,我们使用原代人肝细胞证明了这一点。
依非韦伦和依非韦伦的主要氧化代谢产物,表示为 8-羟基依非韦伦 (8-
OHefavirenz),以依赖于应激激活的方式刺激细胞死亡
激酶 c-Jun N 末端激酶和促凋亡蛋白 BimEL (Bcl-2) 的上调
随后,我们报道了依非韦伦可以
还激活肌醇需要酶 1α (IRE1α),这是上游细胞应激的关键调节因子
JNK 和 BimEL 的目标是确定依非韦伦的作用机制。
和 8-OHefavirenz 激活 BimEL 和 IRE1α,同时还获得了以下机制的理解
IRE1α 的遗传变异如何影响依非韦伦和 8-OH 依非韦伦诱导的细胞死亡。
重要的是,我们将利用通过使用依非韦伦作为模型获得的见解
合成并使用依非韦伦以外的原型肝毒性药物,即卡马西平,
双氯芬酸和异烟肼,以便将 BimEL 和 IRE1α 确立为药物的中央调节剂
一系列药物类别的诱导肝毒性目的如下:(1)测试
假设 BimEL 作为细胞死亡的刽子手来响应依非韦伦和其他药物
原型肝毒性药物:BimEL 无效小鼠将用于确定是否缺乏
BimEL 可防止此处正在研究的肝毒性药物刺激的肝毒性;
CRISPR/Cas9 系统将用于确定效应蛋白 Bax 和 Bak 的作用,
是 BimEL 调节肝细胞死亡的下游;
测定将用于确定依非韦伦、8-OH依非韦伦和其他药物的作用机制
肝毒性药物可调节 BimEL 类似物的转录;
(2) 测试
假设 IRE1α 是药物引起的肝毒性的中央上游调节因子
受到几类药物的刺激:我们将确定依非韦伦、8-OH依非韦伦和
其他肝毒性药物刺激 IRE1α/TRAF2/ASK1/JNK 复合物的形成,从而导致
在 IRE1α 依赖性 JNK 激活中,我们将测试自然发生的遗传的影响;
IRE1α 的变体对活性和细胞死亡的影响预计这些研究将定义 BimEL。
IRE1α 激活是一系列药物诱导的重要分子机制
肝毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Namandje N Bumpus其他文献
Namandje N Bumpus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Namandje N Bumpus', 18)}}的其他基金
Developmental Pharmacology of Antiretroviral Metabolism in Mucosal Tissues
粘膜组织中抗逆转录病毒代谢的发育药理学
- 批准号:
9244420 - 财政年份:2017
- 资助金额:
$ 36.03万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
FrostBite-DMR - A new Drug-Free Approach for Treating Type 2 Diabetes Supplemental Request
FrostBite-DMR - 一种治疗 2 型糖尿病的新无药方法补充请求
- 批准号:
10748325 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Revealing Health Trajectories of Chronic Kidney Disease for Precision Medicine
揭示精准医学慢性肾脏病的健康轨迹
- 批准号:
10714792 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
FrostBite-DMR - A New Drug-Free Approach for Treating Type 2 Diabetes
FrostBite-DMR——一种治疗 2 型糖尿病的无药物新方法
- 批准号:
10596881 - 财政年份:2022
- 资助金额:
$ 36.03万 - 项目类别:
Induction of Cardiomyocyte Proliferation via Transient Expression of Cell Cycle Factors as a Promising Therapy for Heart Failure
通过细胞周期因子的瞬时表达诱导心肌细胞增殖作为心力衰竭的一种有前景的治疗方法
- 批准号:
10365990 - 财政年份:2020
- 资助金额:
$ 36.03万 - 项目类别:
Increasing Recognition of Acute Kidney Injury among Hospitalized Pediatric Patients
住院儿科患者对急性肾损伤的认识不断提高
- 批准号:
10066900 - 财政年份:2020
- 资助金额:
$ 36.03万 - 项目类别: