Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
基本信息
- 批准号:10227196
- 负责人:
- 金额:$ 77.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAffectiveAgeAnxietyArousalAutonomic nervous systemBasic ScienceBehavioralBrainCategoriesClassificationClinicalClipCodeComputer ModelsDataDepressed moodDimensionsDiseaseEmotionalEmotionsEquilibriumExhibitsFormulationFrequenciesFunctional Magnetic Resonance ImagingFutureGoalsGraphHumanIndividualIndividual DifferencesInterventionLinkMachine LearningMaintenanceMapsMeasuresMental HealthMental disordersMethodsMindModelingNegative ValenceOutcomeParticipantPatient Self-ReportPatternPersonal SatisfactionPhysiologicalPopulationPositive ValenceProcessPsychopathologyPsychophysiologyReportingResearchResearch Domain CriteriaRestRiskRoleSignal TransductionSourceSpace ModelsStructureSymptomsSystemTestingTimeTrainingUnited States National Institutes of HealthValidationWorkaffective computinganxiousanxious individualsbasebiobehaviorcomorbiditycravingdata repositoryexperiencefunctional MRI scanimprovedindexingmachine learning algorithmmarkov modelmovienegative affectneural network architectureneurophysiologyneuroregulationnovelorganizational structurerelating to nervous systemrepositorytheoriestooltrait
项目摘要
Maintaining an adaptive balance of emotions is central to well-being, and dysregulated emotions contribute
broadly to clinical disorders that impart high personal and societal burdens. Recognizing the transdiagnostic
importance of emotion to mental health, the National Institute of Health's Research Domain Criteria (RDoC)
matrix contains overarching domains of Negative Valence, Positive Valence, and Arousal. However, the matrix
underspecifies how specific affective states like sadness, anxiety, or craving are organized within and across
these domains, in part because it is unknown whether representations of discrete emotions are reliably
differentiated. Other RDoC constructs, such as rumination and worry, modify the temporal parameters of
emotions that confer psychopathology risk and exacerbate symptom maintenance. Nonetheless, it is unknown
how these processes interface with emotional brain circuits to impact affect dynamics, particularly as they often
occur spontaneously during mind wandering. The proposed research promises to improve the RDoC depiction
of these emotion-related constructs by taking an affective computing approach. During combined recording of
psychophysiology and functional magnetic resonance imaging (fMRI), adult participants will experience
emotions to vignettes and movie clips spanning the arousal and valence dimensions, and will report on their
spontaneous emotions during resting-state fMRI scans. Machine learning algorithms will decode emotion-
specific signals across the levels of analysis, which will be integrated using Bayesian state-space modeling. An
analysis of classifier errors will test competing predictions from emotion theories regarding the optimal
structure of affective space. Using graph theoretic tools, we will characterize the neural network architecture of
the discrete emotion representations to identify provincial and connector hubs that can be used as novel targets
for future symptom-specific or co-morbid neuromodulation interventions, respectively. We will apply the
emotion-specific maps to resting-state data from the same participants to create neurophysiological indices of
spontaneous emotions and to relate their frequencies to measures of trait and state affect as a validation step.
Using stochastic modeling of the resting-state data, we will derive temporal dynamics metrics to test the
hypothesis that rumination and worry promote emotional inertia during mind wandering. Finally, we will use
existing data repositories to demonstrate that our novel indices of affect dynamics transdiagnostically
differentiate resting-state fMRI activity patterns in mental health disorders from healthy controls. The
proposed research will improve upon current RDoC formulations of Negative Affect, Positive Affect, and
Arousal domains by informing how discrete emotions are organized within and across these domains, by
integrating emotion representations across multiple RDoC units of analysis, by informing how rumination and
worry impact neurophysiological signatures of spontaneous emotions, and by establishing the clinical utility of
computationally-derived metrics of emotion dynamics.
保持情绪的适应性平衡是幸福的核心,情绪失调有助于
广泛地指给个人和社会带来沉重负担的临床疾病。认识跨诊断
情绪对心理健康的重要性,美国国立卫生研究院研究领域标准 (RDoC)
矩阵包含负价、正价和唤醒的总体域。然而,矩阵
未明确说明悲伤、焦虑或渴望等特定情感状态如何在内部和外部组织起来
这些领域,部分原因是不知道离散情感的表示是否可靠
差异化。其他 RDoC 构造,例如反思和担忧,修改了时间参数
带来精神病理学风险并加剧症状维持的情绪。尽管如此,仍不得而知
这些过程如何与情绪脑回路相互作用以影响动态,特别是当它们经常发生时
走神时会自然发生。拟议的研究有望改善 RDoC 描述
通过采用情感计算方法来分析这些与情感相关的结构。合并录制期间
心理生理学和功能磁共振成像(fMRI),成人参与者将体验
情绪到跨越唤醒和效价维度的小插曲和电影剪辑,并将报告它们的情况
静息态功能磁共振成像扫描期间的自发情绪。机器学习算法将解码情感——
跨分析级别的特定信号,将使用贝叶斯状态空间建模进行集成。一个
分类器错误的分析将测试情感理论关于最佳分类器的竞争预测
情感空间的结构。使用图论工具,我们将描述神经网络架构
离散情感表征,用于识别可用作新目标的省级和连接器中心
分别用于未来的症状特异性或共病神经调节干预。我们将应用
将特定情绪映射到来自同一参与者的静息状态数据,以创建神经生理学指数
自发的情绪,并将其频率与特征和状态影响的测量联系起来,作为验证步骤。
使用静息态数据的随机建模,我们将推导出时间动态指标来测试
假设沉思和忧虑会在走神时促进情绪惰性。最后,我们将使用
现有的数据存储库来证明我们的新型影响动态指数可以跨诊断
区分精神健康障碍和健康对照组的静息态功能磁共振成像活动模式。这
拟议的研究将改进当前 RDoC 的消极情感、积极情感和
通过告知离散情绪如何在这些领域内和跨这些领域进行组织来唤醒领域
通过告知沉思和思考如何整合跨多个 RDoC 分析单元的情感表征
忧虑影响自发情绪的神经生理学特征,并通过建立忧虑的临床效用
计算得出的情绪动态指标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN S LABAR其他文献
KEVIN S LABAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN S LABAR', 18)}}的其他基金
Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
- 批准号:
10421064 - 财政年份:2020
- 资助金额:
$ 77.4万 - 项目类别:
Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
- 批准号:
10059052 - 财政年份:2020
- 资助金额:
$ 77.4万 - 项目类别:
Neurocomputational Approaches to Emotion Representation
情绪表征的神经计算方法
- 批准号:
10626123 - 财政年份:2020
- 资助金额:
$ 77.4万 - 项目类别:
Neurobehavioral Mechanisms of Emotion Regulation in Depression across the Adult Lifespan
成年期抑郁症情绪调节的神经行为机制
- 批准号:
9883047 - 财政年份:2017
- 资助金额:
$ 77.4万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
8515375 - 财政年份:2009
- 资助金额:
$ 77.4万 - 项目类别:
Biomarkers of Interoceptive Awareness in Adolescent Anorexia Nervosa
青少年神经性厌食症内感受意识的生物标志物
- 批准号:
7819864 - 财政年份:2009
- 资助金额:
$ 77.4万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
8116650 - 财政年份:2009
- 资助金额:
$ 77.4万 - 项目类别:
Brain Imaging Studies of Negative Reinforcement in Humans
人类负强化的脑成像研究
- 批准号:
8307465 - 财政年份:2009
- 资助金额:
$ 77.4万 - 项目类别:
Biomarkers of Interoceptive Awareness in Adolescent Anorexia Nervosa
青少年神经性厌食症内感受意识的生物标志物
- 批准号:
7938798 - 财政年份:2009
- 资助金额:
$ 77.4万 - 项目类别:
相似国自然基金
情感还是语义?表情符号对社交媒体旅游体验分享有用性的影响机理研究
- 批准号:72362009
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
地理场景与旅游情感的时空关联与影响机理研究
- 批准号:42301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“云带货”助农主播对消费者购买行为的影响机理研究:基于情感体验的视角
- 批准号:72302230
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Lateral prefrontal organization in emotion: representational and causal mechanisms
情绪中的外侧前额叶组织:表征和因果机制
- 批准号:
10723060 - 财政年份:2023
- 资助金额:
$ 77.4万 - 项目类别:
The Effect of Cytomegalovirus Infection on Daily Stress Processes in Early Adulthood
巨细胞病毒感染对成年早期日常应激过程的影响
- 批准号:
10678088 - 财政年份:2023
- 资助金额:
$ 77.4万 - 项目类别:
Involvement of dopamine signaling in chronic pain-induced negative affective state and nicotine use comorbidity
多巴胺信号传导参与慢性疼痛引起的负面情感状态和尼古丁使用合并症
- 批准号:
10662951 - 财政年份:2023
- 资助金额:
$ 77.4万 - 项目类别:
Investigation of Digital Media Use, Anxiety, and Biobehavioral Emotion Regulation in Adolescents
青少年数字媒体使用、焦虑和生物行为情绪调节的调查
- 批准号:
10814547 - 财政年份:2023
- 资助金额:
$ 77.4万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 77.4万 - 项目类别: