Unraveling the mechanism by which Rps26-deficient ribosomes form to support the stress response
揭示 Rps26 缺陷核糖体形成支持应激反应的机制
基本信息
- 批准号:10226865
- 负责人:
- 金额:$ 5.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-04-04
- 项目状态:已结题
- 来源:
- 关键词:AlanineAmino AcidsBindingCellsCongenital AbnormalityDataDestinationsDevelopmentDiamond-Blackfan anemiaDiseaseDissociationEnsureEtiologyExcisionFailureGenetic TranslationHeterogeneityIn VitroIndividualLifeLiftingLinkMalignant NeoplasmsMarrowMessenger RNAModificationMolecular ChaperonesMutationOrganismOutcomePathway interactionsPhenotypePhosphorylationPhosphotransferasesPhysiologic pulsePhysiologicalPopulationPositioning AttributePost-Translational Protein ProcessingProductionProtein BiosynthesisProtein DeficiencyProteinsQuality ControlRecombinantsReportingRibosomal ProteinsRibosomal RNARibosomesRiskRoleSeriesSodium ChlorideSpecificityStressTestingTranslatingTranslationsWorkYeastsbiological adaptation to stressbonecancer cellcostdesignexperimental studyhuman diseasein vivointerestmacromoleculemimeticsnovelnull mutationpreferenceprogramsproteostasisrepairedresponse
项目摘要
Project Summary/Abstract
Recently ribosome subpopulations that differ in their composition, lacking individual ribosomal proteins (RPs),
or containing specific modifications have garnered a lot of interest. In the case of RP content, multiple studies
have shown that ribosomes lacking specific RPs are present in cells, including ribosomes deficient in Rps26.
While their physiological relevance remains unclear in most cases, the Karbstein lab has recently
demonstrated that ribosomes lacking Rps26 are produced specifically under high salt and pH stress to enable
the preferential translation of mRNAs encoding proteins from the Hog1 and Rim101 pathways that are required
for the response to these stresses. This change in mRNA specificity between Rps26-containing and deficient
ribosomes arises from the recognition of the -4 position of the Kozak sequence by Rps26, thereby supporting
the translation of well-translated mRNAs by Rps26-containing ribosomes in rich medium, and the translation of
specific mRNAs in the Hog1 and Rim101 pathways by Rps26-deficient ribosomes that are formed under these
stresses.
What remains unknown is how Rps26-deficient ribosomes form under high salt and high pH stress. My
preliminary results suggest Rps26-deficient ribosomes are produced by release of Rps26 from pre-existing
ribosomes. Therefore, I will further dissect in more detail the mechanism that leads to the production of Rps26-
deficient ribosomes, exploring the role of the Rps26-specific chaperone Tsr2 in delivering to and extracting
Rps26 from ribosomes (Aim1), and testing which posttranslational modifications regulate this pathway (Aim2).
Next, I will test if Rps26 is (re-) incorporated into Rps26-deficient ribosomes, to allow for a rapid switch in
mRNA-specificity without the costs of re-building new ribosomes, or whether instead these ribosomes are
degraded (Aim3).
Together, these experiments will clarify how Rps26-deficient ribosomes form under stress. In addition to further
expanding on this novel paradigm of stress-induced production of a specific ribosome population, the results
will also have implications for the development of diseases linked to Rps26-deficiency, such as Diamond-
Blackfan anemia. Because the etiology of 10-15% of all cases remains unknown, and is not linked to RP-
deficiency, it is possible that overactivation of pathways leading to the release of RPs such as Rps26 might be
responsible for a subset of cases, similar to the subset of cases caused by deficiency of the Rps26-chaperone
Tsr2. Furthermore, ribosomes lacking individual RPs, including Rps26, are produced in cancer cells, where
they are associated with poor outcomes. Thus, this work will also help delineate how cancer cells modulate the
translational machinery to subvert translation to its purposes.
项目概要/摘要
最近,核糖体亚群的组成不同,缺乏单独的核糖体蛋白(RP),
或包含特定修饰引起了很多兴趣。就 RP 内容而言,多项研究
研究表明,细胞中存在缺乏特定 RP 的核糖体,包括缺乏 Rps26 的核糖体。
虽然在大多数情况下它们的生理相关性仍不清楚,但卡布斯坦实验室最近发现
证明缺乏 Rps26 的核糖体是在高盐和 pH 胁迫下专门产生的,从而能够
编码来自 Hog1 和 Rim101 途径所需蛋白质的 mRNA 的优先翻译
来应对这些压力。含有 Rps26 的和缺乏 Rps26 的 mRNA 特异性的这种变化
核糖体源自 Rps26 对 Kozak 序列的 -4 位点的识别,从而支持
含有 Rps26 的核糖体在丰富培养基中翻译良好翻译的 mRNA,以及
Hog1 和 Rim101 途径中由 Rps26 缺陷核糖体形成的特定 mRNA
压力。
目前尚不清楚的是 Rps26 缺陷核糖体在高盐和高 pH 胁迫下如何形成。我的
初步结果表明 Rps26 缺陷核糖体是通过从预先存在的 Rps26 中释放而产生的
核糖体。因此,我将进一步更详细地剖析导致Rps26产生的机制——
缺陷核糖体,探索 Rps26 特异性伴侣 Tsr2 在递送和提取中的作用
来自核糖体的 Rps26 (Aim1),并测试哪些翻译后修饰调节该通路 (Aim2)。
接下来,我将测试 Rps26 是否(重新)整合到 Rps26 缺陷核糖体中,以允许快速切换
mRNA 特异性,无需重建新核糖体的成本,或者这些核糖体是否是
降级(目标 3)。
总之,这些实验将阐明 Rps26 缺陷核糖体在压力下如何形成。除了进一步
扩展了这种应激诱导产生特定核糖体群体的新范式,结果
还将对与 Rps26 缺乏相关的疾病的发展产生影响,例如 Diamond-
黑扇贫血。因为所有病例中 10-15% 的病因仍不清楚,且与 RP- 无关
缺陷,可能是导致 RP(例如 Rps26)释放的途径过度激活
负责部分病例,类似于 Rps26 伴侣缺陷引起的病例子集
Tsr2。此外,缺乏单个 RP(包括 Rps26)的核糖体是在癌细胞中产生的,其中
它们与不良结果相关。因此,这项工作也将有助于描述癌细胞如何调节
翻译机器颠覆翻译的目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Yoon-Mo Yang其他文献
Jason Yoon-Mo Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Yoon-Mo Yang', 18)}}的其他基金
Unraveling the mechanism by which Rps26-deficient ribosomes form to support the stress response
揭示 Rps26 缺陷核糖体形成支持应激反应的机制
- 批准号:
10604511 - 财政年份:2020
- 资助金额:
$ 5.01万 - 项目类别:
相似国自然基金
基于D-氨基酸改性拉曼探针的细菌耐药性快速检测
- 批准号:22304126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
化瘀通络法通过SATB1/JUNB介导“氨基酸代谢网-小胶质细胞极化”调控脑缺血神经功能恢复的机制研究
- 批准号:82374172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
磷酸酶SHP2调控成纤维细胞支链氨基酸代谢在炎症性肠病相关肠纤维化中的作用机制研究
- 批准号:82300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸感应器GCN2调控Beclin-1介导的自噬缓解自身免疫性甲状腺炎的作用研究
- 批准号:82370792
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Biology and Molecular Biology of the Evolution of Macrophage-Tropic HIV-1
巨噬细胞趋向性 HIV-1 进化的生物学和分子生物学
- 批准号:
10882245 - 财政年份:2023
- 资助金额:
$ 5.01万 - 项目类别:
Substrate Specificity Determinants in Nutrient Solute Carrier Transporters
营养溶质载体转运蛋白的底物特异性决定因素
- 批准号:
10735432 - 财政年份:2023
- 资助金额:
$ 5.01万 - 项目类别:
Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
- 批准号:
10682486 - 财政年份:2022
- 资助金额:
$ 5.01万 - 项目类别:
Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
- 批准号:
10525010 - 财政年份:2022
- 资助金额:
$ 5.01万 - 项目类别: