Direct observation and quantification of the assembly of Cas9 ribonucleoprotein complex and its activity on nucleosomes at single molecule resolution
单分子分辨率下直接观察和定量 Cas9“核糖核蛋白复合物”的组装及其对核小体的活性
基本信息
- 批准号:10224792
- 负责人:
- 金额:$ 4.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-06-08
- 项目状态:已结题
- 来源:
- 关键词:AdenineAdoptedAffectAffinityAnimal ModelBase SequenceBasic ScienceBehaviorBindingBiochemistryBiological AssayBiological SciencesBiotinBlindnessCRISPR therapeuticsCellsChromatinCleaved cellColorComplexCytosineDNADNA BindingDNA SequenceDNA-Protein InteractionDataData AnalysesDependenceDissociationEnergy TransferEnvironmentEnzymesEquilibriumEukaryotic CellGenesGeneticGenetic TranscriptionGenomeGoalsGuanineGuide RNAHealthcareHematological DiseaseHigh-Throughput Nucleotide SequencingHistonesHumanImmobilizationIncubatedInheritedKineticsKnowledgeLabelLaboratoriesLaboratory ResearchLibrariesMalignant NeoplasmsMammalian CellManuscriptsMeasuresMetabolic DiseasesMethodsModificationMolecularMolecular BiologyMolecular ConformationMusMuscular DystrophiesMutationNeurodegenerative DisordersNucleic AcidsNucleosomesNucleotidesOutcomeOutcome StudyPharmaceutical PreparationsPhase I Clinical TrialsPhysiologicalPlasmidsPlayPopulationProcessProkaryotic CellsProteinsRNARNA FoldingReactionResearch TrainingResolutionResourcesRibonucleoproteinsRoleSideSpecificitySpeedTechniquesTechnologyTestingTherapeuticThermodynamicsThymineTimeTrainingUniversitiesVariantWorkWritingbasebiophysical analysisbiophysical techniquesdesignendonucleaseexperimental studyflexibilityfluorophoregene functiongenome editinggenomic locushigh throughput screeninghuman diseaseimprovedin vivolaboratory experiencelive cell imagingmillisecondnanometernext generation sequencingnucleaseprediction algorithmpreventprogramssingle moleculesingle-molecule FRETskillssymposiumtemporal measurementtoolvirtual
项目摘要
Project Summary/Abstract
Many human diseases arise from mutations that disrupt the cell’s normal behavior, such as in cancer and
neurodegenerative disorders. One method to study the function of genes is to ablate their function using
genome editing and study the outcome in animal models. Clustered regularly interspaced palindromic repeats
(CRISPR) associated proteins, such as Cas9, have emerged as the preferred genome editing tool for both
healthcare and life science applications because it is simple to use compared to other methods. Cas9 is an
endonuclease derived from prokaryotes that is guided to a 20-nucleotide sequence in the genome called the
protospacer by a guide RNA. Cas9 can be programmed by changing the sequence of the guide RNA making it
a programmable DNA cutting protein. This technology is already widely used in the life sciences to study gene
function, and the first Cas9 based drugs are entering phase-1 clinical trials. However, inefficient activity in
mammalian cells is a bottleneck preventing widespread usage. Cas9 specificity enhanced variants and activity
optimized and guide RNA have been developed to improve activity. We and other groups have studied how
Cas9 variants and different guide RNAs influence DNA binding, unwinding and cleavage. Despite the
importance of proper Cas9 complex assembly, Cas9 complex binding and Cas9 cleavage of DNA in a
chromatin compacted mammalian cell, our understanding of the molecular details of these processes and is
poor. In two specific aims, I propose to fill in these knowledge gaps by first quantifying and observing in real-
time how Cas9 complex assembles, and its activity of nucleosomes. Aim one is to adapt a previously
developed single molecule assay where I can mimic co-transcriptional RNA folding to studying the molecular
steps of Cas9 assembly with the guide RNA as it folds. Aim two will probe how Cas9 can binds and cleaves
DNA as a function of DNA flexibility around nucleosomes using a high-throughput sequencing assay. I will then
quantify the binding kinetics and equilibrium constants as a function of DNA flexibility around nucleosomes.
The results of these experiments will significantly contribute to our fundamental understanding of CRISPR Cas
enzymes and will aid efforts to develop Cas9 based therapeutics for cancers and neurodegenerative diseases.
Accomplishing these aims will also provide technical training in multicolor single molecule FRET, biochemistry,
molecular biology and next-generation sequencing. Furthermore, analyzing data, writing manuscripts
summarizing my findings, and presenting at conferences will enhance quantification and soft skills. The Ha
laboratory and Johns Hopkins University are excellent environments for this research training mainly because
of the access to a broad range of expertise and to resources.
项目概要/摘要
许多人类疾病都是由破坏细胞正常行为的突变引起的,例如癌症和
研究基因功能的一种方法是利用基因来消除其功能。
基因组编辑并研究动物模型中的规律间隔回文重复序列的结果。
(CRISPR) 相关蛋白,例如 Cas9,已成为首选的基因组编辑工具
Cas9 与其他方法相比易于使用,因此在医疗保健和生命科学应用中具有优势。
源自原核生物的核酸内切酶,被引导至基因组中的 20 个核苷酸序列,称为
Cas9 的原型间隔子可以通过改变引导 RNA 的序列来编程。
一种可编程的 DNA 切割蛋白,该技术已广泛应用于生命科学领域的基因研究。
功能,第一个基于 Cas9 的药物正在进入 1 期临床试验,但活性低下。
哺乳动物细胞是阻碍 Cas9 特异性增强变体和活性广泛使用的瓶颈。
我们和其他小组已经研究了如何优化和引导RNA。
尽管 Cas9 变体和不同的引导 RNA 会影响 DNA 结合、解旋和切割。
正确的 Cas9 复合物组装、Cas9 复合物结合和 DNA 的 Cas9 切割的重要性
染色质压缩哺乳动物细胞,我们对这些过程的分子细节的理解
在两个具体目标中,我建议通过首先量化和实际观察来填补这些知识空白。
Cas9 复合体如何组装及其核小体活性的时间目标之一是适应以前的情况。
开发了单分子测定法,我可以模拟共转录 RNA 折叠来研究分子
Cas9 与引导 RNA 折叠时的组装步骤,目标二将探究 Cas9 如何结合和裂解。
然后,我将使用高通量测序分析来研究 DNA 作为核小体周围 DNA 灵活性的函数。
量化结合动力学和平衡常数作为核小体周围 DNA 灵活性的函数。
这些实验的结果将极大地有助于我们对 CRISPR Cas 的基本理解
酶并将有助于开发基于 Cas9 的癌症和神经退行性疾病疗法。
实现这些目标还将提供多色单分子 FRET、生物化学、
分子生物学和下一代测序。此外,分析数据、撰写手稿
总结我的发现并在会议上发言将增强量化和软技能。
实验室和约翰霍普金斯大学是这种研究培训的绝佳环境,主要是因为
获得广泛的专业知识和资源的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ikenna Okafor其他文献
Ikenna Okafor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
肠罗斯拜瑞氏菌通过丙酸失活酪氨酸激酶JAK2影响STAT3磷酸化阻抑UC肠道纤维化的分子机制研究
- 批准号:82370539
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IDF代谢产物异丁酸通过促进H2AK5和H2BK12乙酰化修饰调控c-Myc影响NSCLC的分子机制及流行病学研究
- 批准号:82304235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离子通道蛋白CNGA3通过影响线粒体活性氧调控胶质瘤铁死亡的机制研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
成骨细胞初级纤毛通过NPHP4/YAP/EZH2信号轴调控CKIP-1表达影响牵张成骨效果的机制研究
- 批准号:82301046
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体铁蛋白通过影响CXCL2抑制脑缺血再灌注诱导的铁死亡
- 批准号:32300797
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
7728001 - 财政年份:2009
- 资助金额:
$ 4.6万 - 项目类别:
Structural mechanism of DNA segregation by the pSK41 par system
pSK41 par系统DNA分离的结构机制
- 批准号:
7924021 - 财政年份:2009
- 资助金额:
$ 4.6万 - 项目类别: