Machine learning approach to non-invasive MRI-based blood oximetry

基于 MRI 的无创血氧测定的机器学习方法

基本信息

  • 批准号:
    10217710
  • 负责人:
  • 金额:
    $ 58.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-21 至 2024-09-20
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Measurement of blood oxygen (O2) saturation, the fraction of oxygen-saturated hemoglobin in blood, provides information on whole-body and organ-specific O2 delivery and consumption and is used to guide therapy and intervention. Blood sampling and analysis by invasive catheterization performed under X-ray fluoroscopic guidance is the standard method used to measure O2 saturation in multiple anatomical locations in the cardiac chambers and major blood vessels. Non-invasive measurement of O2 saturation using magnetic resonance (MR) imaging was first proposed nearly 30 years ago; however, previous techniques have relied on fitting the Luz- Meiboom model and other model variants using traditional linear and non-linear regression model approaches. Although the model captures the basic underlying biophysical principles, it does not fully characterize the complex relationship between blood O2 saturation and the MR signal. Despite being a non-invasive, non- radiating alternative to invasive catheterization, the low accuracy of MR oximetry, due to inadequacy of the model as well as estimation methods, have prevented the technique from gaining clinical acceptance. We propose to overcome this critical limitation by meeting our overall objective; to deploy a model-free approach based on machine learning (ML) to develop and implement an accurate, clinically feasible, MR oximetry technique. We hypothesize that ML algorithms provide greater flexibility in parameter estimation than traditional methods, and can be trained to learn and map the true in vivo relationship that describes the sensitivity of MR blood signal to O2 saturation. We intend to achieve our objective through the following specific aims. In Aim 1, we will develop a supervised ML algorithm for MR oximetry. Pre-training will occur with training data simulated using the L-M model and then augmented with in vivo data via transfer learning. Simultaneously, in Aim 2, we will design and implement a 3D MR oximetry method for volumetric data acquisition. A volumetric map will facilitate O2 saturation measurement throughout the vascular system, and will support the combination with 4D flow to evaluate O2 delivery and consumption. In Aim 3, we will validate the proposed ML-based 3D MR oximetry technique in a small cohort of patients referred for catheter-based O2 saturation measurement. For the first time, our proposed work will apply machine learning to accurately characterize the in vivo sensitivity of the transverse relaxation time (T2) weighted MR blood signal to O2 saturation, using a unique combination of simulated and in vivo training data. ML-based MR oximetry will provide the accuracy of measurement required for clinical use, and therefore will be able to replace or reduce the frequency and duration of an invasive, radiation-based method with a safe, non-invasive alternative. ML-based MR oximetry as an imaging tool is expected to significantly improve the diagnostic value of an MR exam, and will be especially valuable in the management of patients with congenital heart disease. Our work thus aligns with the mission of NIBIB to have a positive impact on human health with the development of novel technology.
项目概要 血氧 (O2) 饱和度(血液中氧饱和血红蛋白的分数)的测量可提供 有关全身和器官特异性 O2 输送和消耗的信息,用于指导治疗和 干涉。在 X 射线透视下通过侵入性导管进行血液采样和分析 指导是用于测量心脏多个解剖位置的 O2 饱和度的标准方法 腔室和主要血管。使用磁共振 (MR) 无创测量 O2 饱和度 成像技术最早在近 30 年前被提出;然而,以前的技术依赖于拟合 Luz- Meiboom 模型和其他模型变体使用传统的线性和非线性回归模型方法。 尽管该模型捕捉了基本的生物物理原理,但它并没有完全表征 血氧饱和度和 MR 信号之间的复杂关系。尽管是一种非侵入性、非 辐射替代侵入性导管插入术,由于模型的不足,MR 血氧测定法的准确性较低 以及估计方法,阻碍了该技术获得临床认可。我们建议 通过实现我们的总体目标来克服这一关键限制;部署基于无模型的方法 机器学习 (ML),用于开发和实施准确的、临床上可行的 MR 血氧测定技术。我们 假设 ML 算法在参数估计方面比传统方法提供更大的灵活性,并且 可以通过训练来学习和绘制真实的体内关系,该关系描述了 MR 血液信号对 氧气饱和度。我们打算通过以下具体目标来实现我们的目标。在目标 1 中,我们将开发 用于 MR 血氧测定的监督式 ML 算法。预训练将使用 L-M 模拟的训练数据进行 模型,然后通过迁移学习用体内数据进行增强。同时,在目标 2 中,我们将设计并 实施 3D MR 血氧测定方法来采集体积数据。体积图将有助于 O2 饱和度 测量整个血管系统,并将支持与 4D 流相结合来评估 O2 交付和消费。在目标 3 中,我们将验证所提出的基于 ML 的 3D MR 血氧测定技术 转诊进行基于导管的 O2 饱和度测量的一小群患者。 我们提出的工作将首次应用机器学习来准确表征体内敏感性 使用独特的组合,将横向弛豫时间 (T2) 加权 MR 血液信号与 O2 饱和度进行比较 模拟和体内训练数据。基于 ML 的 MR 血氧测定法将提供所需的测量精度 用于临床,因此将能够取代或减少侵入性、 基于辐射的方法,具有安全、非侵入性的替代方法。基于 ML 的 MR 血氧测定法作为一种成像工具 预计将显着提高 MR 检查的诊断价值,并且在 先天性心脏病患者的管理。因此,我们的工作与 NIBIB 的使命是一致的: 随着新技术的发展,对人类健康产生积极影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juliet J. Varghese其他文献

Juliet J. Varghese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Examining the Role of Social Connection in Suicide Risk for Older Autistic Adults: A Mixed Methods Study
检查社会联系在老年自闭症成人自杀风险中的作用:一项混合方法研究
  • 批准号:
    10727637
  • 财政年份:
    2023
  • 资助金额:
    $ 58.78万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 58.78万
  • 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
  • 批准号:
    10805120
  • 财政年份:
    2023
  • 资助金额:
    $ 58.78万
  • 项目类别:
Glove-based Tactile Streaming of Braille Characters and Digital Images for the Visually Impaired
为视障人士提供基于手套的盲文字符和数字图像触觉流传输
  • 批准号:
    10601900
  • 财政年份:
    2023
  • 资助金额:
    $ 58.78万
  • 项目类别:
Project 4: A Naturalistic Observation of Electronic Cigarettes and Oral Nicotine Pouch Product Use Among Adolescents and Young Adults
项目 4:青少年和年轻人使用电子烟和口服尼古丁袋产品的自然观察
  • 批准号:
    10666070
  • 财政年份:
    2023
  • 资助金额:
    $ 58.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了