Leveraging electronic health records to identify risky alcohol use prior to surgery
利用电子健康记录在手术前识别危险的饮酒情况
基本信息
- 批准号:10213578
- 负责人:
- 金额:$ 19.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-10 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdverse eventAgreementAlcohol abuseAlcohol consumptionAlcohol withdrawal syndromeAlcoholsAlgorithmsBiological MarkersClassificationClinicClinicalClinical DataClinical ResearchCodeCollaborationsCommunitiesCommunity HealthComputer AssistedConsumptionDataData CollectionData ElementData SetEarly identificationElectronic Health RecordEvaluationEventFoundationsFundingFutureGuidelinesHealthHealth ExpendituresHealth Services AccessibilityHospitalsIndividualInstitutesInternational Classification of Disease CodesInterventionIntervention StudiesLabelLeadLength of StayLinkMachine LearningMeasuresMethodologyMethodsNatural Language ProcessingOperative Surgical ProceduresOpioidOutcomeOutcome StudyPatientsPharmaceutical PreparationsPhasePhenotypePostoperative PeriodPrecision HealthResearchResearch SupportRiskRisk FactorsSeveritiesStructureSurgical complicationTestingTimeTrainingWorkalcohol abstinencealcohol interventionalcohol riskalcohol screeningalcohol use disorderbasecare episodeclinical applicationcohortcomputable phenotypescomputerized toolscostdirect applicationearly alcohol useexperiencehealth care servicehigh riskhospital readmissionimplementation researchimprovedinnovationknowledge baselongitudinal analysismortalitynovelphosphatidylethanolpredictive testpreventprospectivestructured datasurgery outcomesurgical risktoolunstructured data
项目摘要
Project Summary/Abstract
Patients who consume more than two drinks a day prior to elective surgery are at increased risk of
experiencing a myriad of surgical complications, readmissions, and prolonged hospital stays. Fortunately,
short-term pre-operative abstinence from alcohol mitigates many surgical risks, and carefully timed
interventions can prevent complications and alcohol withdrawal syndrome. However, implementation of pre-
operative alcohol interventions requires accurate identification of patients with risky alcohol use at least four
weeks prior to surgery. Pre-operative clinics frequently fail to screen for alcohol use or do so too close to the
surgery date to allow time for intervention. Electronic health records (EHRs) offer an unprecedented amount of
accessible clinical data that can be leveraged to identify risky alcohol use early in the surgical episode of care.
Innovative methods are needed to identify data elements and create algorithms to capture risky alcohol use
from structured and unstructured EHR data. Natural language processing (NLP) and other machine learning
(ML)-based approaches are best suited to extract and analyze alcohol-related clinical narratives, and to
synthesize heterogeneous alcohol-related data through computer-assisted methods. The proposed study will
leverage EHR data to identify and characterize risky alcohol use among surgical patients to identify cohorts
who could benefit from pre-operative alcohol intervention. The study aims are to: 1) develop an electronic,
automated computable phenotype to classify risky alcohol use prior to surgery using NLP and ML; 2) validate
the algorithm through prospective data collection; and 3) longitudinally evaluate the association between risky
alcohol use phenotypes and adverse surgical outcomes including complications and hospital readmissions.
Innovative applications of NLP and ML will support evaluation of unstructured EHR data (e.g. clinical notes)
and will enable integration of heterogeneous alcohol use data to create the computable phenotype. The aims
will be achieved through collaboration of experts in key clinical domains and advanced methodologies. This
study will create and validate the first alcohol-specific phenotype-based algorithm for surgical patients, which
will support future clinical applications and research into alcohol-related surgical interventions and health
outcomes. Study outcomes are expected to have immediate value for identifying cohorts for future
implementation research and lead to a new clinical tool for surgical clinics.
项目概要/摘要
择期手术前每天饮酒超过两杯的患者发生以下疾病的风险增加
经历了无数的手术并发症、再入院和长期住院。幸运的是,
术前短期戒酒可以减轻许多手术风险,并且要仔细安排时间
干预措施可以预防并发症和酒精戒断综合症。然而,实施预
有效的酒精干预措施需要准确识别至少有四次饮酒危险的患者
手术前几周。术前诊所经常无法筛查饮酒情况,或者筛查的距离太近。
手术日期以便有时间进行干预。电子健康记录 (EHR) 提供了前所未有的数量
可获得的临床数据可用于在手术护理早期识别危险的饮酒情况。
需要创新方法来识别数据元素并创建算法来捕获危险的饮酒情况
来自结构化和非结构化 EHR 数据。自然语言处理 (NLP) 和其他机器学习
基于 (ML) 的方法最适合提取和分析与酒精相关的临床叙述,并
通过计算机辅助方法合成异构酒精相关数据。拟议的研究将
利用 EHR 数据来识别和描述手术患者中的危险饮酒情况,以确定队列
谁可以从术前酒精干预中受益。该研究的目的是:1)开发一种电子、
使用 NLP 和 ML 自动计算表型,对手术前的危险饮酒进行分类; 2)验证
通过前瞻性数据收集的算法; 3)纵向评估风险之间的关联
饮酒表型和不良手术结果,包括并发症和再入院。
NLP 和 ML 的创新应用将支持非结构化 EHR 数据(例如临床记录)的评估
并将能够整合异质酒精使用数据以创建可计算的表型。目标
将通过关键临床领域的专家和先进方法的合作来实现。这
研究将为手术患者创建并验证第一个基于酒精特异性表型的算法,该算法
将支持未来与酒精相关的手术干预和健康的临床应用和研究
结果。研究结果预计将对确定未来的队列具有直接价值
实施研究并为外科诊所带来新的临床工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated-detection of risky alcohol use prior to surgery using natural language processing.
使用自然语言处理在手术前自动检测有风险的饮酒情况。
- DOI:
- 发表时间:2024-01
- 期刊:
- 影响因子:0
- 作者:Vydiswaran, V G Vinod;Strayhorn, Asher;Weber, Katherine;Stevens, Haley;Mellinger, Jessica;Winder, G Scott;Fernandez, Anne C
- 通讯作者:Fernandez, Anne C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Christie Fernandez其他文献
Anne Christie Fernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Christie Fernandez', 18)}}的其他基金
4/4: The INTEGRATE Study: Evaluating INTEGRATEd care to Improve Biopsychosocial Outcomes of Early Liver Transplant for Alcohol-Associated Liver Disease
4/4:综合研究:评估综合护理以改善酒精相关性肝病早期肝移植的生物心理社会结果
- 批准号:
10710711 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Reducing Alcohol use among Elective Surgical Patients using Adaptive Interventions
使用适应性干预措施减少择期手术患者的饮酒量
- 批准号:
10616682 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Reducing Alcohol use among Elective Surgical Patients using Adaptive Interventions
使用适应性干预措施减少择期手术患者的饮酒量
- 批准号:
10337940 - 财政年份:2022
- 资助金额:
$ 19.91万 - 项目类别:
Leveraging electronic health records to identify risky alcohol use prior to surgery
利用电子健康记录在手术前识别危险的饮酒情况
- 批准号:
10676250 - 财政年份:2020
- 资助金额:
$ 19.91万 - 项目类别:
Leveraging electronic health records to identify risky alcohol use prior to surgery
利用电子健康记录在手术前识别危险的饮酒情况
- 批准号:
10604757 - 财政年份:2020
- 资助金额:
$ 19.91万 - 项目类别:
Integrating Alcohol Screening, Brief Intervention, and Referral to Treatment into Presurgical Care
将酒精筛查、短暂干预和转诊治疗纳入术前护理
- 批准号:
9355372 - 财政年份:2016
- 资助金额:
$ 19.91万 - 项目类别:
Integrating Alcohol Screening, Brief Intervention, and Referral to Treatment into Presurgical Care
将酒精筛查、短暂干预和转诊治疗纳入术前护理
- 批准号:
9032886 - 财政年份:2016
- 资助金额:
$ 19.91万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Treatment of OSA on sleep-dependent memory and blood biomarkers in blacks
OSA 治疗对黑人睡眠依赖性记忆和血液生物标志物的影响
- 批准号:
10740142 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Person-centered quality measurement and management in a system for addictions treatment in New York State
纽约州成瘾治疗系统中以人为本的质量测量和管理
- 批准号:
10772463 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
1/2 – Pediatric Prehospital Airway Resuscitation Trial
1/2 — 儿科院前气道复苏试验
- 批准号:
10738581 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 19.91万 - 项目类别: