Understanding developmental patterning's influence on morphogenesis
了解发育模式对形态发生的影响
基本信息
- 批准号:10389165
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAddressAffectApicalAreaBiochemicalBiologicalBrainCaenorhabditis elegansCandidate Disease GeneCell PolarityCell ShapeCellsCellular biologyComplementCongenital AbnormalityContractsCytoskeletonData SetDefectDevelopmentEmbryoEndodermEventFailureFutureGenesGeneticGenetic TranscriptionGoalsHumanImaging TechniquesKnowledgeLeadLinkLive BirthMass Spectrum AnalysisModelingMolecularMorphogenesisMyosin ATPaseNematodaNeural Tube ClosureNeural Tube DefectsNeural tubeNonmuscle Myosin Type IIAOpticsOrganismPatternPhosphotransferasesPrincipal InvestigatorProcessProteinsRNA InterferenceRegulationReproducibilityRoleShapesSideSpinal CordSurfaceTestingTimeTissuesTrainingTranscriptTranslatingUnited StatesUp-RegulationWorkbiochemical toolscareercell cortexcell fate specificationconstrictiongastrulationinsightknock-downmutantneuroepitheliumnovelperoxisomeprecursor cellrecruitresponsescreeningspatiotemporalsuccesstranscription factortranscriptometranscriptome sequencing
项目摘要
Abstract
Morphogenetic events utilize precisely timed changes in cell shape. One of the fundamental
mechanisms cells use to change their shape is apical constriction. Apical constriction relies on the contraction
of cortical actomyosin networks that causes the apical side of a cell to shrink, resulting in tissue
morphogenesis. In humans, apical constriction aids the internalization of the future spinal cord and brain in a
process known as neural tube closure. Failure of apical constriction can lead to neural tube defects, which
accounts for birth defects in 1 out of every 3,000 live births. Therefore, uncovering the processes that govern
apical constriction will advance our understanding of basic mechanisms underlying cell shape changes,
causes, and potential treatments for neural tube defects.
Despite current knowledge of developmental patterning of apical constriction, precise genetic
mechanisms that govern which cells undergo apical constriction, how the apical surface is determined, and
when to constrict, remain only partially understood. I plan to use Caenorhabditis elegans (C. elegans)
gastrulation, a morphogenetic event driven by apical constriction, to address these issues. Gastrulation in C.
elegans starts with the internalization of the two endodermal precursor cells (EPCs), which depend on the
spatial and temporal precision of the expression of cell fate specification factors end-1 and end-3. However,
mechanistic links between end-1,3 and the resulting apical constriction remain largely unknown. Using the
genetically tractable and optically clear C. elegans, I plan to dissect the cellular mechanisms that translate
developmental patterning into specific, localized, and precisely timed cell shape changes. Comparing the
transcriptome of wild-type and end-3 null embryos, I identified thirty target genes whose expression depends
on end-3. After screening these genes, I identified ten new genes that contribute to C. elegans gastrulation. In
Aim 1, I will use a variety of cell biological approaches to identify the mechanisms by which some of these
genes couple developmental patterning to changing cell shape.
Aim 2 focuses on the myosin-activating kinase MRCK-1 localizes to the apical cell cortex of EPCs and
is required for apical constriction. MRCK-1 is dependent on end-1,3 expression and becomes localized apically
specifically in only EPCs despite MRCK-1 being present at similar levels in all cells. I will use MRCK-1
localization as a molecular foothold for understanding how a pivotal protein becomes recruited to the apical
cortex in only certain cells. Aim 2 will further investigate which domains of MRCK-1 are required for this
localization pattern and identify interactors with these domains that function to initiate apical constriction, to
better connect cell fate regulators and intracellular localization of a key protein. Overall, I propose the use of
genetic, biochemical, and imaging techniques to advance our understanding of how transcriptional networks
and other developmental patterning inputs deploy localized factors that influence cell shape changes.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Bowie其他文献
Emily Bowie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Bowie', 18)}}的其他基金
Understanding developmental patterning's influence on morphogenesis
了解发育模式对形态发生的影响
- 批准号:
10541837 - 财政年份:2022
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别: