Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
基本信息
- 批准号:10211755
- 负责人:
- 金额:$ 48.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-21 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdoptedAffectAffinityAgeAlzheimer&aposs DiseaseApplications GrantsBindingBiocompatible MaterialsBiologicalBlood VesselsBone InjuryBone Morphogenetic ProteinsBone RegenerationBone TransplantationBone callusCartilageCellsChondrocytesClinicClinicalDataDevelopmentDiabetes MellitusDiseaseDoseEngineeringExhibitsFDA approvedFractureFracture HealingGoalsGrantHeparinImpaired healingIn VitroInjectableInjuryInvadedKineticsLabelLiteratureMediatingMolecularMusNGFR ProteinNatural regenerationNerve Growth FactorsNerve RegenerationNeuropathyNeurotrophic Tyrosine Kinase Receptor Type 1NociceptionObesityOperative Surgical ProceduresOsteoblastsPainPainlessPathway interactionsPatient-Focused OutcomesPatientsPharmacotherapyPhasePhysiologic OssificationPopulationPositioning AttributePre-Clinical ModelProcessProtein IsoformsResearchRiskRoleSignal PathwaySignal TransductionSiteSmokingStress FracturesTestingTherapeuticTimeTranslatingTranslationsUnited StatesVascularizationWorkbasebeta cateninbonebone fracture repairbone healingcartilaginousclinical efficacyclinical translationclinically relevantcomorbiditycostdesigndiabeticfracture riskhealingimplantationimprovedin vivointramembranous bone formationlocal drug deliverylong bonemouse modelmutantnanowirenerve supplyneurovascularnovelosteogenicpolycaprolactoneprogramsreceptorreinnervationrepairedresponsescaffoldstandard of caretibiatranscriptome sequencing
项目摘要
ABSTRACT
The long-term goal of this project is to develop and validate an injectable, biodegradable nanowire delivery
platform for local and sustained release of a “painless” nerve growth factor (NGF) isoform to accelerate
fracture healing in clinical scenarios of delayed healing. Approximately 15 million fracture injuries occur
each year in the United States (US).6 An estimated 10-15% of fractures within a healthy population result in
delayed- or non-union.7,8 However, delayed healing rates increase to almost 50% in patients with vascular
damage or high co-morbidity burdens such as diabetes, increased age, smoking, and obesity.9,10 The current
standard of care for delayed healing or non-union is surgical intervention to increase stability or to promote
healing through application of bone grafts. Bone morphogenetic protein (BMP) is the only biologic with FDA
approval for use in fracture repair, with “on-label” use only within a narrow indication window. However, BMP
requires surgical implantation and is typically limited to only the most at-risk fractures due to the high cost, limited
evidence of clinical efficacy, and risk of severe off-target effects.11-14 As such, there exists an unmet clinical
need for biologics that could stimulate bone regeneration in a non-surgical delivery platform. This
application builds on strong preliminary data demonstrating that NGF accelerates fracture repair when injected
into the cartilaginous phase of long bone healing. Importantly, our preliminary data is the first to show that NGF
acts on chondrocytes to promote programs associated with endochondral ossification (EO). The goal of this
grant is to build upon these preliminary data to develop NGF into a platform suitable for clinical translation. In
the first Aim, we optimize the dose and timing of a mutant form of NGF (NGFR100W) to stimulate endochondral
fracture repair. NGFR100W is a novel “painless” NGF that efficiently binds to the TrkA receptor to provide the same
trophic effect as wild type NGF, but fails to bind to the p75NTR receptor to significantly reduce risk of
nociception.15,16 In the second Aim, we probe the mechanism by which NGF/NGFR100W stimulates fracture repair
by conditionally deleting the TrkA receptor. To date the molecular pathways stimulated by therapeutic delivery
of NGF have not been rigorously studied in long bone fracture healing. Lastly, in the third Aim, we modify our
previously developed injectable heparin coated polycaprolactone (PCL) nanowires17 for encapsulation and
sustained delivery of painless NGF. Here we also incorporate a pre-clinical model of diabetes (Lepob) established
to demonstrate delayed healing to challenge our therapy in a clinically relevant scenario of malunion. These aims
allow us to test the central hypothesis that a painless NGF therapy can improve fracture healing by acting
through TrkA signaling to stimulate chondrocyte-to-osteoblast transformation. Our interdisciplinary team
of experts in fracture healing, biomaterials, and NGF/TrkA signaling uniquely positions us to successfully
accomplish the proposed study. Importantly, our approach is grounded in creating a translationally relevant
therapeutic platform that has the potential to significantly improve patient outcomes following a fracture.
抽象的
该项目的长期目标是开发和验证可注射、可生物降解的纳米线输送
用于局部和持续释放“无痛”神经生长因子(NGF)异构体以加速释放的平台
骨折愈合延迟愈合的临床情况中大约发生了 1500 万例骨折损伤。
美国 (US) 每年都会发生这种情况。6 据估计,健康人群中 10-15% 的骨折会导致
延迟愈合或不愈合。7,8 然而,血管性血管病患者的延迟愈合率增加到近 50%
损害或高并发症负担,如糖尿病、年龄增长、吸烟和肥胖。9,10
延迟愈合或不愈合的护理标准是手术干预以增加稳定性或促进
骨形态发生蛋白 (BMP) 是唯一获得 FDA 批准的生物制剂。
批准用于骨折修复,仅在狭窄的适应症范围内“标签上”使用。
需要手术植入,并且由于成本高、有限,通常仅限于最危险的骨折。
临床疗效的证据,以及严重脱靶效应的风险。11-14 因此,存在未满足的临床需求
需要能够在非手术输送平台中刺激骨再生的生物制剂。
该应用建立在强有力的初步数据之上,证明 NGF 注射后可加速骨折修复
重要的是,我们的初步数据首次表明 NGF 的存在。
作用于软骨细胞以促进与软骨内骨化 (EO) 相关的程序。
赠款的目的是在这些初步数据的基础上将 NGF 开发成适合临床转化的平台。
第一个目标是,我们优化 NGF 突变体 (NGFR100W) 的剂量和时间,以刺激软骨内
NGFR100W 是一种新型“无痛”NGF,可有效结合 TrkA 受体以提供相同的效果。
具有与野生型 NGF 相同的营养作用,但无法与 p75NTR 受体结合,从而显着降低风险
nociception.15,16 在第二个目标中,我们探讨了 NGF/NGFR100W 刺激骨折修复的机制
通过有条件地删除 TrkA 受体迄今为止,治疗递送刺激的分子途径。
NGF 在长骨骨折愈合中的作用尚未经过严格研究。最后,在第三个目标中,我们修改了我们的研究。
先前开发的可注射肝素涂层聚己内酯(PCL)纳米线17用于封装和
在此,我们还纳入了建立的糖尿病临床前模型(Lepob)。
证明延迟愈合以挑战我们在临床相关的畸形愈合情况下的治疗。
让我们检验一个中心假设,即无痛 NGF 疗法可以通过作用来改善骨折愈合
我们的跨学科团队通过 TrkA 信号传导刺激软骨细胞向成骨细胞转化。
骨折愈合、生物材料和 NGF/TrkA 信号传导方面的专家使我们能够取得成功
重要的是,我们的方法基于创建翻译相关的研究。
该平台有可能显着改善骨折后患者的治疗结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chelsea Shields Bahney其他文献
Chelsea Shields Bahney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chelsea Shields Bahney', 18)}}的其他基金
Improved Tools for Accessing Pain Following Fracture and Enabling Standardized Pain Phenotyping
改进用于获取骨折后疼痛并实现标准化疼痛表型的工具
- 批准号:
10856944 - 财政年份:2021
- 资助金额:
$ 48.26万 - 项目类别:
Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
- 批准号:
10882542 - 财政年份:2021
- 资助金额:
$ 48.26万 - 项目类别:
Dual-Delivery of Bioactive and Anti-Microbial Nanowires for Accelerated Bone Repair
双重递送生物活性和抗菌纳米线以加速骨修复
- 批准号:
10630656 - 财政年份:2021
- 资助金额:
$ 48.26万 - 项目类别:
Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
- 批准号:
10662506 - 财政年份:2021
- 资助金额:
$ 48.26万 - 项目类别:
Dual-Delivery of Bioactive and Anti-Microbial Nanowires for Accelerated Bone Repair
双重递送生物活性和抗菌纳米线以加速骨修复
- 批准号:
10630656 - 财政年份:2021
- 资助金额:
$ 48.26万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8256413 - 财政年份:2012
- 资助金额:
$ 48.26万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8619586 - 财政年份:2012
- 资助金额:
$ 48.26万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8446609 - 财政年份:2012
- 资助金额:
$ 48.26万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8256413 - 财政年份:2012
- 资助金额:
$ 48.26万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 48.26万 - 项目类别:
Implementing Scalable, PAtient-centered Team-based Care for Adults with Type 2 Diabetes and Health Disparities (iPATH)
为患有 2 型糖尿病和健康差异的成人实施可扩展、以患者为中心的团队护理 (iPATH)
- 批准号:
10660735 - 财政年份:2023
- 资助金额:
$ 48.26万 - 项目类别:
Muscle Fatigue's Impact on Gait Mechanics and Neuromuscular Control in Knee Osteoarthritis
肌肉疲劳对膝骨关节炎步态力学和神经肌肉控制的影响
- 批准号:
10676554 - 财政年份:2023
- 资助金额:
$ 48.26万 - 项目类别:
Optimizing the Generation of Monoclonal Antibodies for Prevention and Treatment of HSV Disease
优化用于预防和治疗 HSV 疾病的单克隆抗体的生成
- 批准号:
10717320 - 财政年份:2023
- 资助金额:
$ 48.26万 - 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 48.26万 - 项目类别: