Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
基本信息
- 批准号:10386924
- 负责人:
- 金额:$ 79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-07 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAffinityAnimal ModelAntibodiesAntigen PresentationAntigen TargetingAntigen-Presenting CellsAntigensB-LymphocytesBeliefBiomedical EngineeringBiomimeticsBolus InfusionCD8-Positive T-LymphocytesCD8B1 geneCellsChemicalsClinicClinical TrialsClonal ExpansionCollaborationsComplexComputer ModelsCytokine SignalingDeveloping CountriesDevelopmentDoseEngineeringEpitopesEvaluationFormulationFutureGenerationsGenetic VariationHIVHIV AntigensHIV vaccineHIV-1HLA-A geneHalf-LifeHelper-Inducer T-LymphocyteHumanImmuneImmune responseImmune systemImmunityImmunizationImmunoglobulin GImmunoglobulin MImmunologic TestsImmunologyIndividualInfectionInflammationKineticsKnock-in MouseLaboratoriesLipidsMachine LearningMembrane ProteinsMessenger RNAMethodsModelingModificationMusMutationPathway interactionsPatternProcessProductionPropertyProtocols documentationRNA vaccinationRNA vaccineResearch PersonnelSchemeSignal TransductionStructureStructure of germinal center of lymph nodeSystemT cell responseT-LymphocyteTailTechniquesTestingTherapeuticTimeToxic effectTransgenic MiceTranslatingTranslationsVaccinationVaccinesVariantViraladoptive B cell transfercell behaviorclinical developmentclinical translationcombinatorialcombinatorial chemistrycross reactivitydesignefficacy validationenv Gene Productshumanized mouseimmune activationimmunogenicityimprovedin vivolipid nanoparticlelymph nodesmRNA deliverymodels and simulationmolecular dynamicsmouse modelnanoformulationnanoparticle deliverynanotherapeuticnanovaccineneutralizing antibodynext generationnovelpandemic diseasepathogenresponsetargeted deliveryvaccination protocolvaccine candidatevaccine developmentvaccine efficacyvaccine evaluation
项目摘要
Many HIV vaccine candidates have failed clinical trials, as they were unable to elicit a potent and durable response to
HIV viral challenge. Broadly neutralizing antibodies (bnAbs) have been identified in a number of HIV+ individuals with
well-controlled viral levels, and these bnAbs target epitopes that contain residues that are relatively conserved across viral
strains. It is thought bnAbs may have efficacy against various strains of HIV pathogen. It is therefore widely believed that
systems which induce a potent immune response that includes the generation of broadly neutralising antibodies (bnAbs) in
humans could be effective HIV vaccines, and help to mitigate the wide genetic diversity in envelope proteins and
relatively high mutation rate of HIV.
However, developing a vaccine which can elicit the production of these bnAbs in vivo has proven to be extremely
challenging. This is likely due to the complex affinity maturation process that is required to produce bnAbs. Immunization
protocols typically administer a single dose of antigen (prime dose), which is sometimes followed by a “boost” dose
delivered several weeks later. In a traditional bolus immunization, the half-life of the antigen present in lymph nodes is
generally shorter than the time scale over which germinal centres start producing higher affinity IgG antibodies relative to
the initial IgM response (~18 hrs). In contrast, natural infections expose the immune system to escalating antigen and
inflammation over days to weeks, resulting in the formation of a germinal centre with dynamic antigen presentation. This
germinal centre niche also supports activation of antigen presenting cells, T follicular helper cells, and appropriate
cytokine signalling to generate bnAbs. It is likely that to develop effective bnAbs, sophisticated vaccination techniques
which can more closely mimic natural infections and natural bnAb formation may be required.
We believe that to develop a successful HIV vaccine, researchers must aim to engineer more sophisticated and biomimetic
vaccines. Bioengineered vaccines should therefore consider three key parameters in parallel; 1) delivery of an
appropriately selected antigen, with 2) favourable kinetics of antigen expression, and 3) control of the immune response in
the germinal centre. We believe lymph node targeted delivery of computationally designed mRNA antigens inside
immunostimulatory lipid nanoparticles (mRNA LNPs) administered with computationally optimized immunization
protocols will address these three aspects in a unique way. Additionally,Translate Bio will provide expertise in
manufacturing considerations for mRNA therapeutics. As modifications to mRNA structure may impact the mRNA
antigen translation, stability, and immunogenicity, the input of our translational partner (Translate Bio) will allow us to
develop vaccines with a potential avenue for commercial development. This R61/R33 proposal combines our expertise in
computational antigen design, HIV immunology, combinatorial chemistry, and the commercialisation of mRNA
therapeutics to develop a new class of HIV mRNA vaccine candidates.
许多候选艾滋病毒疫苗都失败了临床试验,因为它们无法引起有效和持久的反应
HIV 病毒攻击已在许多 HIV + 患者中发现了广泛中和抗体 (bnAb)。
病毒水平得到良好控制,并且这些 bnAb 靶向的表位含有在病毒中相对保守的残基
人们认为 bnAb 可能对多种 HIV 病原体具有功效。
诱导有效免疫反应的系统,包括在体内产生广泛中和抗体(bnAb)
人类可以成为有效的艾滋病毒疫苗,并有助于减少蛋白质和药物中广泛的遗传多样性。
HIV突变率相对较高。
然而,事实证明,开发一种能够在体内诱导产生这些 bnAb 的疫苗是极其困难的。
这可能是由于生产 bnAb 所需的复杂的亲和力成熟过程。
方案通常施用单剂量抗原(初始剂量),有时随后是“加强”剂量
在传统的推注免疫中,淋巴结中存在的抗原的半衰期是几周后。
通常比生发中心开始产生更高亲和力 IgG 抗体的时间尺度要短
最初的 IgM 反应(约 18 小时)相反,自然感染使免疫系统暴露于不断增加的抗原和
数天至数周的炎症,导致形成具有动态抗原呈递的生发中心。
生发中心生态位还支持抗原呈递细胞、滤泡辅助 T 细胞和适当的抗原呈递细胞的激活
产生 bnAb 的细胞因子信号传导 开发有效的 bnAb 可能需要复杂的疫苗接种技术。
它可以更接近地模拟自然感染,并且可能需要自然的 bnAb 形成。
我们相信,要开发成功的艾滋病毒疫苗,研究人员必须致力于设计更复杂和仿生的疫苗
因此,生物工程疫苗应同时考虑三个关键参数:1)疫苗的交付;
适当选择的抗原,具有 2) 有利的抗原表达动力学,以及 3) 控制免疫反应
我们相信淋巴结内有计算设计的 mRNA 抗原的靶向传递。
通过计算优化免疫进行免疫刺激脂质纳米粒子(mRNA LNP)
协议将以独特的方式解决这三个方面的问题,Translate Bio 将提供以下方面的专业知识。
mRNA 疗法的生产注意事项。 mRNA 结构的修饰可能会影响 mRNA。
抗原翻译、稳定性和免疫原性,我们的翻译合作伙伴 (Translate Bio) 的输入将使我们能够
该 R61/R33 提案结合了我们在以下领域的专业知识:开发具有潜在商业开发途径的疫苗。
计算抗原设计、HIV 免疫学、组合化学和 mRNA 商业化
开发一类新型 HIV mRNA 候选疫苗的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL G ANDERSON其他文献
DANIEL G ANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL G ANDERSON', 18)}}的其他基金
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10446179 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10344605 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
SMART BIOELECTRONIC IMPLANTS FOR CONTROLLED DELIVERY OF THERAPEUTIC PROTEINS IN VIVO AND ITS APPLICATION IN LONG-TERM TREATMENT OF HEMOPHILIA A
用于体内治疗性蛋白质控制输送的智能生物电子植入物及其在血友病 A 长期治疗中的应用
- 批准号:
10615840 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Nonviral delivery techniques for in vivo prime editing
用于体内引物编辑的非病毒传递技术
- 批准号:
10548169 - 财政年份:2022
- 资助金额:
$ 79万 - 项目类别:
Combinatorial and computational design of bnAb mRNA vaccines for HIV
HIV bnAb mRNA 疫苗的组合和计算设计
- 批准号:
10592273 - 财政年份:2021
- 资助金额:
$ 79万 - 项目类别:
Develop combinatorial non-viral and viral CRISPR delivery for lung diseases
开发针对肺部疾病的组合非病毒和病毒 CRISPR 递送
- 批准号:
10274832 - 财政年份:2018
- 资助金额:
$ 79万 - 项目类别:
Interfering with the macrophage life cycle of atherosclerosis
干扰动脉粥样硬化的巨噬细胞生命周期
- 批准号:
9412185 - 财政年份:2017
- 资助金额:
$ 79万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
9061704 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8706186 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
High throughput microfluidic intracellular delivery platform
高通量微流控细胞内递送平台
- 批准号:
8839787 - 财政年份:2013
- 资助金额:
$ 79万 - 项目类别:
相似国自然基金
茯苓多糖-蜂窝状氧化锰纳米粒的佐剂活性及作用机制研究
- 批准号:32302914
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可注射大孔明胶支架负载易被吞噬和自佐剂的肿瘤细胞建立治疗性肿瘤疫苗激活T细胞免疫响应
- 批准号:32371395
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
肿瘤微环境多层次调控的功能化纳米佐剂用于增强膀胱癌放疗疗效的机制研究
- 批准号:82303571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Investigating protective adaptive immune responses to influenza antigens using human tonsil organoids
使用人扁桃体类器官研究对流感抗原的保护性适应性免疫反应
- 批准号:
10733719 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Nanotechnology-based platform for the development of next-generation vaccines against opioid use disorder (OUD)
基于纳米技术的平台,用于开发针对阿片类药物使用障碍(OUD)的下一代疫苗
- 批准号:
10751208 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
"Extended dosing" immunization to enhance humoral immunity to next-generation vaccines
“延长剂量”免疫增强对下一代疫苗的体液免疫
- 批准号:
10638732 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别:
Core D: Biostatistics and Computational Analysis Core
核心 D:生物统计学和计算分析核心
- 批准号:
10731280 - 财政年份:2023
- 资助金额:
$ 79万 - 项目类别: